과제정보
The author(s) received no financial support for the research, authorship, and/or publication of this article.
참고문헌
- Akbas, S.D. (2016a), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akbas, S.D. (2016c), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
- Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
- Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanica, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
- Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int. J. Mech. Sci., 53, 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010
- Ansari, R., Rouhi, S. and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Computat. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/JCAMECH.2017.243530.195
- Attarnejad, R. and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Computat. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97
- Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
- Banerjee, J. and Williams, F. (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0045-7949(92)90026-V
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
- Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
- Budiansky, B. and Sanders, J.L. (1963), "On the best first order linear shell theory, progress in applied mechanics", MacMillan, Inc., Greenwich, Conn., 192, 129-140.
- Chawis, T., Somchai, C. and Li, T. (2013), "Nonlocal elasticity theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257
- Chen, X. and Cao, G.X. (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027
- Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019
- Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "St Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
- Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179
- Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037
- El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M. and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., Int. J., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013
- Eltaher, M.A., Almalki T.A., Ahmed K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
- Flugge, W. (1962), Stresses in Shells, (2nd edition), Springer-Verlag, Berlin, Germany.
- Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115
- Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Mathe. Model., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036
- Grupta, S.S. and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Computat. Mater. Sci., 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032
- Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001
- Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5
- Hersham, M.C. (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech., 3, 387-394. https://doi.org/10.1038/nnano.2008.135
- Hong., B.H., Small J.P., Purewal, M.S., Mullokandov, A., Sfeir, M.Y., Wang, F., Lee, J.Y., Heinz, T.F., Brus, L.E., Kim, P. and Kim, K.S. (2005), "Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes", Proceedings of the National Academy of Sciences, 102, 14155-14158. https://doi.org/10.1073/pnas.0505219102
- Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Physics Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
- Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
- Hussain, M. and Naeem, M.N. (2018a), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering. ISBN 978-953-51-6706-8
- Hussain, M. and Naeem, M. (2018b), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials - Synthesis and Applications. ISBN 978-953-51-5896-7 https://doi.org/10.5772 /intechopen.73503
- Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
- Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095
- Hussain, M. and Naeem, M. (2019c), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Mathem. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
- Hussain, M. and Naeem, M.N. (2019d), "Vibration Characteristics of Single-Walled Carbon Nanotubes Based on Nonlocal Elasticity Theory Using Wave Propagation Approach (WPA) Including Chirality", In: Perspective of Carbon Nanotubes, IntechOpen. https://doi.org/10.5772/intechopen.85948
- Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4), 045114. https://doi.org/10.1063/1.4979112
- Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics. ISBN 978-953-51-5706-9 https://doi.org/10.5772 /intechopen.72172
- Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320
- Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
- Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro & Nano Letters. https://doi.org/10.1049/mnl.2019.0309
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
- Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
- Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solids, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy. M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B (Condensed Matter and Materials Physics), 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013
- Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condensed Matter, 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
- Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T. and Smalley, R.E. (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253
- Lordi, V. and Yao, N. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323
- Lu, J., Chen, H., Lu, P. and Zhang, P. (2007), "Research of natural frequency of single-walled carbon nanotube", Chinese J. Chem. Phys., 20, 525. https://doi.org/10.1088/1674-0068/20/05/525-530
- Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Computat. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
- Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
- Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
- Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017
- Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466
- Mehar, K., Panda, S.K. and Patle, B.K. (2018a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018c), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Mungra, C. and Webb, J.F. (2015), "Free Vibration Analysis of Single-Walled Carbon Nanotubes Based on the Continuum Finite Element Method", Global J. Technol Optim., 6, 173. http://dx.doi.org/10.4172/2229-8711.1000173
- Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Computat. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
- Narendar, S. and Gopalakrishnan, S. (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E: Low-dimens. Syst. Nanostruct., 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026
- Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418
- Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Computati. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264
- Rafiee, R. and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater.: Des. Applicat., 230(2), 654-662. https://doi.org/10.1177/1464420715584809
- Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Computat. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010
- Rana, G.C., Chand, R., Sharma, V. and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Computat. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256
- Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nanoscale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592
- Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2009), "Vibrational analysis of single-walled carbon nanotubes using beam element", Thin-Wall. Struct., 47(6), 646-652. https://doi.org/10.1016/j.tws.2008.11.002
- Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P. and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64. https://doi.org/10.1038/nature13607
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
- Shakouri, A., Lin, R. and Ng, T. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003
- Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R. and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a typespecific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r
- Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753
- Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
- Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B: Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
- Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407
- Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Physical Review B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401
- Wang, C.Y. and Zhang, L.C. (2007), "Modeling the free vibration of single-walled carbon nanotubes", Proceedings of the 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, pp. 10-12.
- Wang, Q., Xu, F. and Zhou, G.Y. (2005), "Continuum model for stability analysis of carbon nanotubes under initial bend", Int. J. Struct. Stabil. Dyn., 5(4), 579-595. https://doi.org/10.1142/S0219455405001738
- Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4), 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
- Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES_JOUR_1965_007_062_02
- Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035
- Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.
- Zhao, Q., Gan, Z. and Zhuang, Q. (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.1002/elan.200290000
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125
피인용 문헌
- Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.307
- Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
- Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
- On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
- Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
- Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.0127
- Free vibration of multi-cracked beams vol.79, pp.4, 2020, https://doi.org/10.12989/sem.2021.79.4.441
- New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2020, https://doi.org/10.12989/amr.2021.10.3.169