DOI QR코드

DOI QR Code

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal (Department of Mathematics, Government College University Faisalabad) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Government College University Faisalabad) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Algeria Faculty of Technology, Civil Engineering Department)
  • Received : 2019.08.16
  • Accepted : 2020.02.24
  • Published : 2020.04.25

Abstract

In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. Akbas, S.D. (2016a), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143
  2. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  3. Akbas, S.D. (2016c), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  4. Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  5. Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  6. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  7. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
  8. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
  9. Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
  10. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanica, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
  11. Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int. J. Mech. Sci., 53, 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010
  12. Ansari, R., Rouhi, S. and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Computat. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/JCAMECH.2017.243530.195
  13. Attarnejad, R. and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Computat. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97
  14. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
  15. Banerjee, J. and Williams, F. (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0045-7949(92)90026-V
  16. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
  17. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  18. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
  19. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
  20. Budiansky, B. and Sanders, J.L. (1963), "On the best first order linear shell theory, progress in applied mechanics", MacMillan, Inc., Greenwich, Conn., 192, 129-140.
  21. Chawis, T., Somchai, C. and Li, T. (2013), "Nonlocal elasticity theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257
  22. Chen, X. and Cao, G.X. (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027
  23. Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019
  24. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "St Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
  25. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
  26. Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
  27. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179
  28. Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037
  29. El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M. and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., Int. J., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013
  30. Eltaher, M.A., Almalki T.A., Ahmed K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039
  31. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
  32. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
  33. Flugge, W. (1962), Stresses in Shells, (2nd edition), Springer-Verlag, Berlin, Germany.
  34. Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115
  35. Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Mathe. Model., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036
  36. Grupta, S.S. and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Computat. Mater. Sci., 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032
  37. Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001
  38. Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5
  39. Hersham, M.C. (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech., 3, 387-394. https://doi.org/10.1038/nnano.2008.135
  40. Hong., B.H., Small J.P., Purewal, M.S., Mullokandov, A., Sfeir, M.Y., Wang, F., Lee, J.Y., Heinz, T.F., Brus, L.E., Kim, P. and Kim, K.S. (2005), "Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes", Proceedings of the National Academy of Sciences, 102, 14155-14158. https://doi.org/10.1073/pnas.0505219102
  41. Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Physics Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007
  42. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
  43. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
  44. Hussain, M. and Naeem, M.N. (2018a), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering. ISBN 978-953-51-6706-8
  45. Hussain, M. and Naeem, M. (2018b), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials - Synthesis and Applications. ISBN 978-953-51-5896-7 https://doi.org/10.5772 /intechopen.73503
  46. Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
  47. Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095
  48. Hussain, M. and Naeem, M. (2019c), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Mathem. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
  49. Hussain, M. and Naeem, M.N. (2019d), "Vibration Characteristics of Single-Walled Carbon Nanotubes Based on Nonlocal Elasticity Theory Using Wave Propagation Approach (WPA) Including Chirality", In: Perspective of Carbon Nanotubes, IntechOpen. https://doi.org/10.5772/intechopen.85948
  50. Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4), 045114. https://doi.org/10.1063/1.4979112
  51. Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics. ISBN 978-953-51-5706-9 https://doi.org/10.5772 /intechopen.72172
  52. Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320
  53. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459
  54. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  55. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro & Nano Letters. https://doi.org/10.1049/mnl.2019.0309
  56. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0
  57. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  58. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
  59. Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solids, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022
  60. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  61. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy. M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B (Condensed Matter and Materials Physics), 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013
  62. Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condensed Matter, 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301
  63. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
  64. Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099
  65. Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  66. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T. and Smalley, R.E. (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253
  67. Lordi, V. and Yao, N. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323
  68. Lu, J., Chen, H., Lu, P. and Zhang, P. (2007), "Research of natural frequency of single-walled carbon nanotube", Chinese J. Chem. Phys., 20, 525. https://doi.org/10.1088/1674-0068/20/05/525-530
  69. Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Computat. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274
  70. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  71. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  72. Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  73. Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017
  74. Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266
  75. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
  76. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
  77. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
  78. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689
  79. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
  80. Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466
  81. Mehar, K., Panda, S.K. and Patle, B.K. (2018a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409
  82. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
  83. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018c), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
  84. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
  85. Mungra, C. and Webb, J.F. (2015), "Free Vibration Analysis of Single-Walled Carbon Nanotubes Based on the Continuum Finite Element Method", Global J. Technol Optim., 6, 173. http://dx.doi.org/10.4172/2229-8711.1000173
  86. Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Computat. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
  87. Narendar, S. and Gopalakrishnan, S. (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E: Low-dimens. Syst. Nanostruct., 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026
  88. Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418
  89. Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Computati. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264
  90. Rafiee, R. and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater.: Des. Applicat., 230(2), 654-662. https://doi.org/10.1177/1464420715584809
  91. Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Computat. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010
  92. Rana, G.C., Chand, R., Sharma, V. and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Computat. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256
  93. Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nanoscale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592
  94. Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2009), "Vibrational analysis of single-walled carbon nanotubes using beam element", Thin-Wall. Struct., 47(6), 646-652. https://doi.org/10.1016/j.tws.2008.11.002
  95. Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P. and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64. https://doi.org/10.1038/nature13607
  96. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  97. Shakouri, A., Lin, R. and Ng, T. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993
  98. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234
  99. Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003
  100. Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R. and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a typespecific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r
  101. Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753
  102. Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
  103. Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B: Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
  104. Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407
  105. Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Physical Review B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401
  106. Wang, C.Y. and Zhang, L.C. (2007), "Modeling the free vibration of single-walled carbon nanotubes", Proceedings of the 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, pp. 10-12.
  107. Wang, Q., Xu, F. and Zhou, G.Y. (2005), "Continuum model for stability analysis of carbon nanotubes under initial bend", Int. J. Struct. Stabil. Dyn., 5(4), 579-595. https://doi.org/10.1142/S0219455405001738
  108. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4), 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
  109. Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES_JOUR_1965_007_062_02
  110. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
  111. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
  112. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035
  113. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.
  114. Zhao, Q., Gan, Z. and Zhuang, Q. (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.1002/elan.200290000
  115. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125

Cited by

  1. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.307
  2. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
  3. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  4. On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
  5. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  6. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  7. Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.0127
  8. Free vibration of multi-cracked beams vol.79, pp.4, 2020, https://doi.org/10.12989/sem.2021.79.4.441
  9. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2020, https://doi.org/10.12989/amr.2021.10.3.169