DOI QR코드

DOI QR Code

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman (Graduate School of Natural and Applied Sciences, Advanced Technologies-Materials Science and Engineering Program, Bursa Technical University) ;
  • Unur, Ece (Department of Energy Systems Engineering, Bursa Technical University)
  • 투고 : 2019.03.06
  • 심사 : 2019.08.16
  • 발행 : 2020.02.28

초록

Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

키워드

참고문헌

  1. P. Simon, T. Brousse, and F. Favier, Supercapacitors Based on Carbon or Pseudocapacitive Materials, Vol. 3, Wiley-ISTE, 2017.
  2. A. Vlad and A. Balducci, Nat. Mater., 2017, 16(2), 161- 162. https://doi.org/10.1038/nmat4851
  3. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen, Adv. Sci., 2018, 5(1), 1700322. https://doi.org/10.1002/advs.201700322
  4. P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7(11), 845-854. https://doi.org/10.1038/nmat2297
  5. H.Y. Lee and J.B. Goodenough, J. Solid State Chem., 1999, 144(1), 220-223. https://doi.org/10.1006/jssc.1998.8128
  6. M. Toupin, T. Brousse, and D. Belanger, Chem. Mater., 2004, 16(16), 3184-3190. https://doi.org/10.1021/cm049649j
  7. S. Devaraj and N. Munichandraiah, J. Phys. Chem. C, 2008, 112(11), 4406-4417. https://doi.org/10.1021/jp7108785
  8. Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, and Z. Geng, J. Power Sources, 2013, 242, 78-85. https://doi.org/10.1016/j.jpowsour.2013.05.062
  9. D. Yan, Y. Li, Y. Liu, R. Zhuo, B. Geng, Z. Wu, J. Wang, P. Ren, and P. Yan, Electrochim. Acta, 2015, 169, 317-325. https://doi.org/10.1016/j.electacta.2015.04.078
  10. W. Chen, X. Tao, Y. Li, H. Wang, D. Wei, and C. Ban, J. Mater. Sci. Mater. Electron., 2016, 27(7), 6816-6822. https://doi.org/10.1007/s10854-016-4632-0
  11. H. Zhou, Z. Yan, X. Yang, J. Lv, L. Kang, and Z.H. Liu, Mater. Chem. Phys., 2016, 177, 40-47. https://doi.org/10.1016/j.matchemphys.2016.03.035
  12. G. Zhao, J. Li, L. Jiang, H. Dong, X. Wang, and W. Hu, Chem. Sci., 2012, 3(2), 433-437. https://doi.org/10.1039/C1SC00722J
  13. Z. Li, J. Wang, Z. Wang, H. Ran, Y. Li, X. Han, and S. Yang, New J. Chem., 2012, 36(7), 1490-1495. https://doi.org/10.1039/c2nj21052e
  14. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater., 2015, 14(3), 271-279. https://doi.org/10.1038/nmat4170
  15. Y.L. Zhong, Z. Tian, G.P. Simon, and D. Li, Mater. Today, 2015, 18(2), 73-78. https://doi.org/10.1016/j.mattod.2014.08.019
  16. S. Chen, J. Zhu, and X. Wang, ACS Nano, 2010, 4(10), 6212-6218. https://doi.org/10.1021/nn101857y
  17. N. Sinan and E. Unur, Mater. Chem. Phys., 2016, 183, 571-579. https://doi.org/10.1016/j.matchemphys.2016.09.016
  18. M. Cai, D. Thorpe, D.H. Adamson, and H.C. Schniepp, J. Mater. Chem., 2012, 22(48), 24992-25002. https://doi.org/10.1039/c2jm34517j
  19. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Solid State Commun., 2007, 143(1-2), 44-46. https://doi.org/10.1016/j.ssc.2007.01.050
  20. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, Nano Lett., 2006, 6(12), 2667-2673. https://doi.org/10.1021/nl061420a
  21. K.B. Ricardo, A. Sendecki, and H. Liu, Chem. Commun., 2014, 50(21), 2751-2754. https://doi.org/10.1039/c3cc49273g
  22. M. Cao, N. Wang, L. Wang, Y. Zhang, Y. Chen, Z. Xie, Z. Li, E. Pambou, R. Li, C. Chen, F. Pan, H. Xu, J. Penny, J.R.P. Webster, and J.R. Lu, J. Mater. Chem. B, 2016, 4(1), 152-161. https://doi.org/10.1039/C5TB02065D
  23. M. Lotya, P.J. King, U. Khan, S. De, and J.N. Coleman, ACS Nano, 2010, 4(6), 3155-3162. https://doi.org/10.1021/nn1005304
  24. X. Jin, W. Zhou, S. Zhang, and G.Z. Chen, Small, 2007, 3(9), 1513-1517. https://doi.org/10.1002/smll.200700139
  25. J. Shang, B. Xie, Y. Li, X. Wei, N. Du, H. Li, W. Hou, and R. Zhang, ACS Nano, 2016, 10(6), 5916-5921. https://doi.org/10.1021/acsnano.6b01229
  26. H. Su, P. Zhu, L. Zhang, F. Zhou, G. Li, T. Li, Q. Wang, R. Sun, and C. Wong, J. Electroanal. Chem., 2017, 786, 28-34. https://doi.org/10.1016/j.jelechem.2017.01.002
  27. D. Yan, P. Yan, S. Cheng, J. Chen, R. Zhuo, J. Feng, and G. Zhang, Cryst. Growth Des., 2009, 9(1), 218-222. https://doi.org/10.1021/cg800312u
  28. H. Chen, C.-K. Hsieh, Y. Yang, X.Y. Liu, C.-H. Lin, C.-H. Tsai, Z.Q. Wen, F. Dong, and Y.X. Zhang, ChemElectroChem, 2017, 4(9), 2414-2422. https://doi.org/10.1002/celc.201700041
  29. X. Zhang, D. Chang, J. Liu, and Y. Luo, J. Mater. Chem., 2010, 20(24), 5080-5085. https://doi.org/10.1039/c0jm00050g
  30. C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, and J.P. Pereira-Ramos, Solid State Ionics, 2003, 159(3-4), 345-356. https://doi.org/10.1016/S0167-2738(03)00035-3
  31. K.S.W. Sing, Pure Appl. Chem., 1985, 57(4), 603-619. https://doi.org/10.1351/pac198557040603
  32. D. Hou, H. Tao, X. Zhu, and M. Li, Appl. Surf. Sci., 2017, 419, 580-585. https://doi.org/10.1016/j.apsusc.2017.05.080
  33. J. Kawahara, P.A. Ersman, I. Engquist, and M. Berggren, Org. Electron., 2012, 13(3), 469-474. https://doi.org/10.1016/j.orgel.2011.12.007
  34. B. Mendoza-Sanchez, J. Coelho, A. Pokle, and V. Nicolosi, Electrochim. Acta, 2015, 174, 696-705. https://doi.org/10.1016/j.electacta.2015.06.030
  35. S. Shivakumara and N. Munichandraiah, Solid State Commun., 2017, 260, 34-39. https://doi.org/10.1016/j.ssc.2017.05.015
  36. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Belanger, Appl. Phys. A, 2006, 82(4), 599-606. https://doi.org/10.1007/s00339-005-3401-3
  37. P. Tang, L. Han, and L. Zhang, ACS Appl. Mater. Interfaces, 2014, 6(13), 10506-10515. https://doi.org/10.1021/am5021028
  38. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C, 2014, 118(40), 22865-22872. https://doi.org/10.1021/jp505744p
  39. J. Duay, E. Gillette, R. Liu, and S.B. Lee, Phys. Chem. Chem. Phys., 2012, 14(10), 3329-3337. https://doi.org/10.1039/c2cp00019a

피인용 문헌

  1. NiMoO4@NiMnCo2O4 Heterostructure: A Poly(3,4-propylenedioxythiophene) Composite-Based Supercapacitor Powers an Electrochromic Device vol.13, pp.29, 2020, https://doi.org/10.1021/acsami.1c07064