DOI QR코드

DOI QR Code

조사료와 농후사료 급여비율에 따른 젖소 우분의 대사체 탐색

Research fecal metabolite according to fed different ratios of roughage to concentrate on lactating cow using 1H-NMR analysis

  • 김현상 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 이신자 (경상대학교 농업생명과학연구원(중점연구소)) ;
  • 엄준식 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 이성실 (경상대학교 응용생명과학부(BK21Plus))
  • Kim, Hyun Sang (Division of Applied Life Science(BK21Plus), Gyeongsang National University) ;
  • Lee, Shin Ja (Institue of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University) ;
  • Eom, Jun Sik (Division of Applied Life Science(BK21Plus), Gyeongsang National University) ;
  • Lee, Sung Sill (Division of Applied Life Science(BK21Plus), Gyeongsang National University)
  • 투고 : 2019.11.01
  • 심사 : 2020.02.07
  • 발행 : 2020.02.29

초록

이 연구는 급여하는 조사료와 농후사료 비율을 달리하였을 때, 우분 내 대사체 비교를 핵자기공명장치로 확인하기 위해 실시되었다. 착유중인 젖소 6마리를 두 그룹으로 나누어 조사료와 농후사료 급여 비율(HR 그룹=8:2, HC 그룹=2:8)을 달리 하였다. 우분은 직장을 통해 마리별 1회 채취 하였으며 대사체 분석은 SPE-800 MHz NMR-MS system을 이용하였다. 대사체의 정성 및 정량은 Chenomx NMR suite 8.4을 이용하였으며, 확인된 대사체들을 Metaboanalyst 4.0을 이용하여 다변량 분석, 대사경로 분석을 진행하였다. 통계분석은 SAS program을 이용하여 Dunnett's test로 그룹 간 대사체 평균값을 비교 하였다. 분석 결과, 다변량 분석에서는 그룹간의 분리가 확인 되었으며 확인된 대사체 중 통계분석에는 77개의 대사체가 이용되었다. HC 그룹에서 유의적으로 높았던 대사체는 succinate를 포함한 dimethylamine, histamine, homovanillate, thymol, acetate, propionate, butyrate, isovalerate, valerate, imidazole, N-Nitrosodimethylamine 그리고 O-Acetylcholine 이다. HC 그룹에서 분석된 대사체들의 평균 농도가 HR 그룹에 비해 높았으며, 분석된 대사경로 또한 HR 그룹에 비해 다양했다. 연구결과, 핵자기공명분광장치를 통해 분석한 우분 내 대사체는 장내 미생물 뿐 만 아니라 체내 대사 그리고 향후 축산 관련 다양한 연구에 유용하게 사용될 것으로 사료된다.

This study examined the metabolites in different roughage to concentrate ratios using proton nuclear magnetic resonance spectroscopy (1H-NMR). Six lactating cows were divided into two groups that were fed different roughage to concentrate ratios (HR group = 8:2, HC group = 2:8). Feces samples were collected individually at one time, and the metabolites were analyzed using an SPE-800 MHz NMR-MS system. The metabolites were identified and quantified using a Chenomx NMR suite 8.4. Metabolic pathway analysis and principal component analysis were conducted using a Metaboanalyst 4.0. Statistical analysis was performed using a Dunnett's test on the SAS program. As a result, several metabolites were identified, and among them, 77 metabolites were used in statistical analysis. The levels of twelve metabolites were significantly higher in the HC group: succinate, dimethylamine, histamine, homovanillate, thymol, acetate, propionate, butyrate, isovalerate, valerate, imidazole, N-nitrosodimethylamine, and O-acetylcholine. In the HC group, the concentrations of all metabolites were higher than in the HR group, and the metabolic pathway was also different. This study is expected to be useful for a variety of livestock studies by 1H-NMR because it examined the change in metabolites in the body metabolism and microorganisms.

키워드

참고문헌

  1. D. H. Kim, I. B. Lee, D. Y. Choi, J. I. Song, J. H. Jeon, D. M. Ha. "A Survey on Current State of Odor Emission and Control from Livestock Operations", Journal of Animal Environmental Science, Vol.19, No.2, pp.123-132, Dec. 2013. DOI: https://doi.org/10.11109/JAES.2013.19.2.123
  2. C. W. Song, N. C. Kim, J. K. Ryu, J. M. Kim. "A study on the fuelization of livestock sludge using thermal hydrolysis", Journal of Korea Organic Resource Recycling Association, Vol.23, No.3, pp.51-59, Sep. 2015. DOI: https://doi.org/10.17137/korrae.2015.23.3.051
  3. P. D. Le, A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker, M. W. A. Verstegen. "Odour from animal production facilities: its relationship to diet", Nutrition Research Reviews, Vol.18, No.1, pp.3-30, Jun. 2005. DOI: https://doi.org/10.1079/NRR200592
  4. S. H. Seo, S. E. Park, E. J. Kim, D H. Youn, Y. M. Lee, S. Y. Lee, S. H. Bok, D. H. Park, C. S. Seo, S. H. Byun, K. Y. Jun, D. S. Kim, C. S. Na, H. S. Son, "GC/MS-based metabolomics approach to evaluate the effect of jackyakgamcho-tang on acute colitis", Evidence-Based Complementary and Alternative Medicine, Vol.2019, Article ID 4572764, Jan. 2019. DOI: https://doi.org/10.1155/2019/4572764
  5. Y. Mu, X. Lin, Z. Wang, Q. Hou, Y. Wang Z. Hu, "Highproduction dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle", MicrobiologyOpen, Vol.8, No.4, pp.e00673, Apr. 2019. DOI: https://doi.org/10.1002/mbo3.673
  6. N. Sillner, A. Walker, D. Hemmler, M. Bazanella, S. S. Heinzmann, D. Haller, P. Schmitt-Kopplin, "Milk-derived amadori products in feces of formula-fed infants", Agricultural and Food Chemistry, Vol.67, No.28 pp.8061-8069, Jun. 2019. DOI: https://doi.org/10.1021/acs.jafc.9b01889
  7. J. Fiori, S. Turroni, M. Candela, R. Gotti, "Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches (Review)", Journal of Pharmaceutical and Biomedical Analysis, Vol.177, No.2020, pp.112867, Sep. 2019. DOI: https://doi.org/10.1016/j.jpba.2019.112867
  8. S. H. Kim, S. O. Yang, K. H. Kim, Y. S. Kim, K. H. Liu, Y. R. Yoon, D. Lee, C. H. Lee, G. S. Hwang, M. W. Chung, K. H. Choi, H. K. Choi. "Research trends, applications, and domestic research promotion stratigies of metabolomics", The Korean Society for Biotechnology and Bioengineering, Vol.24, No.2, pp.113-121, Jun. 2009. DOI: https://www.earticle.net/Article/A110997
  9. K. Y. Park, M. C. Kim, K. L. Woo, N. K. Lee, H. D. Paik, "Rapid analysis of major putrefactive metabolites by GC and GC/MSD", Korean Society for Biotechnology and Bioengineering Journal, Vol.18, No.1, pp.74-77, Feb 2003. DOI: https://www.earticle.net/Article/A101219
  10. J. S. Eom, S. J. Lee, Y. G. Lee, S. S. Lee. "Comparison of volatile fatty acids, monosaccharide analysis and metabolic profiling in rumen fluid according to feeding methods", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 12, pp 814-824. Dec. 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.12.814
  11. J. S. Eom, S. J. Lee, S. K. Lee, Y. J. Lee, H. S. Kim, Y. Y. Choi, K. S. Ki, H. Y. Jeong, E. T. Kim, S. S. Lee, C. D. Lee, S. S. Lee. "Effects of different roughage to concentrate ratios on the changes of productivity and metabolic profiles in milk of dairy cows", Korean Journal of Organic Agriculture, Vol.27, No.2, pp 147-160. May 2019. DOI: https://dx.doi.org/10.11625/KJOA.2019.27.2.147
  12. O. Deda, A. C. Chatziioannou, S. Fasoula, D. Palachanis, N. Raikos, G. A. Theodoridis, H. G. Gika, "Sample preparation optimization in fecal metabolic profiling", Journal of Chromatography B, Vol.1047, No.15, pp.115-123, Mar. 2017. DOI: https://doi.org/10.1016/j.jchromb.2016.06.047
  13. B. K. Kim, C. B. Choi, S. O. Lee, K. H. Baek, D. J. Jung, E. G. Hwang "Effects of supplementing herbs on growth performances, blood composition and diarrhea in Hanwoo calves", Journal of Animal Science and Technology, Vol.53, No.5, pp.451-459, Oct. 2011. DOI: https://doi.org/10.5187/JAST.2011.53.5.451
  14. C. W. Dunnett. "A multiple comparison procedure for comparing several treatments with a control", Journal of the American Statistical Association, Vol.50 No.272, pp.1096-1121. Apr. 1955 DOI: https://doi.org/10.1080/01621459.1955.10501294
  15. M. T. Yokoyama, J. R. Carlson, "Production of Skatole and para-Cresol by a Rumen Lactobacillus sp.", Applied and Enviromental Microbiology, Vol.41, No.1, pp.71-76, Jan. 1981. DOI: https://doi.org/10.1128/aem.41.1.71-76.1981
  16. F. Saleem, B. N. Ametaj, S. Bouatra, R. Mandal, Q. Zebeli, S. M. Dunn, D. S. Wishart, "A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows", Journal of Dairy Science, Vol.95, No.11, pp.6604-6623, Nov. 2012. DOI: https://doi.org/10.3168/jds.2012-5403
  17. M. Friedman, "Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices", Journal of agricultural and food chemistry, Vol.62, No.31, pp.7652-7670, Jul. 2014. DOI : https://doi.org/10.1021/jf5023862
  18. A. Sivropoulou, E. Papanikolaou, C. Nikolaou, S. Kokkini, T. Lanaras, M. Arsenakis, "Antimicrobial and cytotoxic activities of Origanum essential oils", Journal of Agricultural and Food Chemistry, Vol.44, No.5. pp.1202-1205, May. 1996. DOI: https://doi.org/10.1021/jf950540t
  19. Y. J. Chen, O. S. Kwon, B. J. Kim, K. S. Shon, J. H. Cho, I. H. Kim, "The effects of dietary biotite V supplementation on growth performance, nutrients digestibility and fecal noxious gas content in finishing pigs", Asian-Australasian Journal of Animal Science, Vol.18, No.8, pp.1147-1152, Dec. 2005. DOI: https://doi.org/10.5713/ajas.2005.1147
  20. S. Mao, R. Zhang, D. Wang, W. Zhu, "The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows", BMC Veterinary Research, Vol.8, pp.237, Dec. 2012. DOI: http://www.biomedcentral.com/1746-6148/8/237
  21. D. N. Miller, V. H. Varel, "In vitro study of the biochemical origin and production limits of odorous compounds in cattle feedlots", Journal of Animal Science, Vol.79, No.12, pp.2949-2956, Dec. 2001. DOI: https://doi.org/10.2527/2001.79122949x
  22. D. N. Miller, V. H. Varel, "Swine manure composition affects the biochemical origins, composition, and accumulation of odorous compounds", Journal of Animal Science, Vol.81, No.9, pp.2131-2138, Sep. 2003. DOI: https://doi.org/10.2527/2003.8192131x