DOI QR코드

DOI QR Code

Investigation of Measurement Feasibility of Particulate Matter Concentration by Different Land-Use Types Using Drone

드론을 이용한 토지이용별 미세먼지 농도 측정 가능성 모색 연구

  • Son, Seung-Woo (Department of Land and Water Environment Research, Korea Environment Institute) ;
  • Yu, Jae-Jin (Department of Land and Water Environment Research, Korea Environment Institute) ;
  • Kim, Dong-Woo (Department of Land and Water Environment Research, Korea Environment Institute) ;
  • Kim, Tae-Hyun (Department of Land and Water Environment Research, Korea Environment Institute) ;
  • Sung, Woong-Gi (Department of Land and Water Environment Research, Korea Environment Institute) ;
  • Yoon, Jeong-Ho (Department of Land and Water Environment Research, Korea Environment Institute)
  • 손승우 (한국환경정책.평가연구원) ;
  • 유재진 (한국환경정책.평가연구원) ;
  • 김동우 (한국환경정책.평가연구원) ;
  • 김태현 (한국환경정책.평가연구원) ;
  • 성웅기 (한국환경정책.평가연구원) ;
  • 윤정호 (한국환경정책.평가연구원)
  • Received : 2020.01.20
  • Accepted : 2020.04.03
  • Published : 2020.04.29

Abstract

This study measured the Particulate Matter (PM) concentration according to altitude (30 m, 60 m, 90 m, 120 m, and 150 m) in three different environments: a construction site, natural environment (arboretum), and residential area. PM2.5 and PM10 values at 30 m above the construction site were 18.63 ㎍/㎥ and 24.23 ㎍/㎥ while values at 150 m were 10.89 ㎍/㎥ and 10.61 ㎍/㎥, respectively, indicating the average concentration decreased as altitude increased. PM2.5 and PM10 values at 30 m above the natural environment were 9.03 ㎍/㎥ and 11.21 ㎍/㎥ while those at 150 m were 3.42 ㎍/㎥ and 3.57 ㎍/㎥, respectively, showing lower average concentrations as altitude increased. PM2.5 and PM10 values at 30 m above the residential area were 10.65 ㎍/㎥ and 12.06 ㎍/㎥ while those at 150 m were 4.24 ㎍/㎥ and 5.17 ㎍/㎥, also demonstrating lower PM concentrations as altitude increased. The PM concentrations decreased as altitude increased at all tested sites and also decreased between environments in the following order: construction site, residential area, and natural environment. The results of this study are significant because PM concentrations were measured at various altitudes at different land-use sites. The results are expected to serve as basic data for decision-making in both regional and urban planning.

본 연구에서는 원하는 시간과 장소에서 데이터 수집이 용이한 드론에 미세먼지 측정 센서를 부착하여 3가지 측정환경인 건설현장, 자연환경(수목원), 주거지역에서 고도(30m, 60m, 90m, 120m, 150m)에 따른 미세먼지 농도를 측정하고 비교하였다. 건설현장 30m 지점의 PM2.5와 PM10 측정값은 각각 18.63㎍/㎥, 24.23㎍/㎥, 150m 지점의 PM2.5와 PM10 측정값은 각각 10.89㎍/㎥, 10.61㎍/㎥로 고도가 높아질수록 평균 농도가 낮아지는 것으로 나타났다. 자연환경(수목원) 30m 지점의 PM2.5와 PM10 측정값은 각각 9.03㎍/㎥, 11.21㎍/㎥, 150m 지점의 PM2.5와 PM10 측정값은 각각 3.42㎍/㎥, 3.57㎍/㎥로 고도가 높아질수록 평균 농도가 낮아지는 것으로 나타났으나, 모든 지점의 PM2.5와 PM10 측정값은 비슷한 것으로 나타났다. 주거지역 30m 지점의 PM2.5와 PM10 측정결과는 각각 10.65㎍/㎥, 12.06㎍/㎥, 150m 지점의 PM2.5와 PM10의 측정값은 각각 4.24㎍/㎥, 5.17㎍/㎥로 고도가 높아질수록 대체적으로 PM2.5와 PM10농도가 낮아짐을 확인하였다. 주거지역의 경우 건설현장이나 수목원에 비해 교통량이 많은 도로에 인접해 있어 PM2.5의 농도가 PM10의 농도보다 높게 나온 것으로 사료된다. 세 대상지 모두 고도가 상승할수록 PM2.5와 PM10의 농도가 감소하는 추세를 보였다. 또한, 건설현장, 주거지역, 자연환경(수목원) 순으로 PM2.5와 PM10의 농도가 높은 것으로 확인하였다. 본 연구의 결과는 토지이용별로 미세먼지 농도값을 고도별로 측정하였다는데 의의가 있으며, 지역계획이나 도시계획 등에서 중요한 공간의사결정 기초자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. J. Wivou, L. Udawatta, A. Alshehhi, E. Alzaabi, A. Albeloshi, S. Alfalasi, "Air Quality Monitoring for Sustainable Systems via Drone Based Technology", 2016 IEEE International Conference on Information and Automation for Sustainability(ICIAfS), IEEE, Galle, Sri Lanka, pp.1-5, Dec. 2016. DOI: https://doi.org/10.1109/ICIAFS.2016.7946542
  2. M. Uysal, A. S. Toprak, N. Polat, "DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill", Measurement, Vol.73, pp.539-543, 2015. DOI: https://doi.org/10.1016/j.measurement.2015.06.010
  3. Y. Reshetyuk, S. G. Martensson, "Generation of Highly Accurate Digital Elevation Models with Unmanned Aerial Vehicles", Photogrammetric Record, Vol.31, No.154, pp.143-165, 2016. DOI: https://doi.org/10.1111/phor.12143
  4. N. Pineux, J. Lisein, G. Swerts, C.L. Bielders, P. Lejeune, G. Colinet, A. Degre, "Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?", Geomorphology, Vol.280, pp.122-136, 2017. DOI: https://doi.org/10.1016/j.geomorph.2016.12.003
  5. O. G. Ajayi, A. A. Salubi, A. F. Angbas, M. G. Odigure, "Generation of accurate digital elevation models from UAV acquired low percentage overlapping images", International Journal of Remote Sensing, Vol.38, No.8-10, pp.3113-3134, 2017. DOI: https://doi.org/10.1080/01431161.2017.1285085
  6. Y. Wu, J. M. Hao, L. X. Fu, Z.S. Wang, U. Tang, "Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China", Atmospheric Environment, Vol.36, No.31, pp.4907-4918, 2002. DOI: https://doi.org/10.1016/S1352-2310(02)00467-3
  7. W. Tao, X. Li, A. Khain, T. Matsui, S. Lang, J. Simpson, "Role of atmospheric aerosol concentration on deep convective precipitation : Cloud-resolving model simulations", Journal of Geophysical Research: Atmospheres, Vol.112, 2007. DOI: https://doi.org/10.1029/2007JD008728
  8. S. Lu, D. Wang, X. Li, Z. Wang, Y. Gao, Z. Peng, "Three-Dimensional Distribution of Fine Particulate Matter Concentrations and Synchronous Meteorological Data Measured by an Unmanned Aerial Vehicle (UAV) in Yangtze River Delta, China", Atmospheric Measurement Techniques Discussions, 2016. DOI: https://doi.org/10.5194/amt-2016-57
  9. M. Alvarado, F. Gonzalez, P. Erskine, D. Cliff, D. Heuff, "A Methodology to Monitor Airborne $PM_{10}$ Dust Particles Using a Small Unmanned Aerial Vehicle", Sensors, Vol.17, No.2, pp.343, 2017. DOI: https://doi.org/10.3390/s17020343
  10. J. H. Lee, "Black Carbon Measurement using a Drone", Journal of Korean Society for Atmospheric Environment, Vol.34, No.3, pp.486-492, 2018. DOI: https://doi.org/10.5572/KOSAE.2018.34.3.486
  11. T. F. Villa, E. R. Jayaratne, L. F. Gonzalez, L. Morawska, "Determination of the Vertical Profile of Particle Number Concentration Adjacent to a Motorway Using an Unmanned Aerial Vehicle", Environmental Pollution, Vol.230, pp.134-142, 2017. DOI: https://doi.org/10.1016/j.envpol.2017.06.033
  12. K. Weber, G. Heweling, C. Fischer, M. Lange, "The Use of an Octocopter UAV for the Determination of Air Pollutants: A Case Study of the Traffic Induced Pollution Plume Around a River Bridge in Duesseldorf, Germany", International Journal of Environmental Science, Vol.2, pp.63-66, 2017.
  13. H. J. Noh, J. H. Yu, "Improvement Plan of Fugitive Dust Regulations in Construction Site", Korean Journal of Construction Engineering and Management, Vol.18, No.5, pp.68-76, 2017. DOI: https://doi.org/10.6106/KJCEM.2017.18.5.068