DOI QR코드

DOI QR Code

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao (School of Civil Engineering, Chongqing University) ;
  • Liu, Xinrong (School of Civil Engineering, Chongqing University) ;
  • Wang, Yunteng (School of Civil Engineering, Chongqing University)
  • 투고 : 2019.10.26
  • 심사 : 2019.12.12
  • 발행 : 2020.04.25

초록

The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Central Universities of China

This work is supported by National Natural Science Foundation of China (Grant Nos. 41972266; 41772319; 51674151), National Key Research and Development Program of China (Grant No. 2018YFC1504802), and Fundamental Research Funds for the Central Universities of China (Grant No. 2019CDCG0013) which are gratefully acknowledged.

참고문헌

  1. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  2. Christe, P., Turberg, P., Labious, V., Meuli, R. and Parriaux, A. (2011), "An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples", Eng. Geol., 117, 180-188. https://doi.org/10.1016/j.enggeo.2010.10.016.
  3. Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms", Appl. Sci., 9(20), 4450. https://doi.org/10.3390/app9204450.
  4. Cao, R. H., Cao, P., Lin, H., Ma, G.W., X., Fan and Xiong, X.G. (2018), "Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach", Arch. Civ. Mech. Eng., 18(1), 198-214. https://doi.org/10.1016/j.acme.2017.06.010.
  5. Cala, M., Cyran, K., Stopkowicz, A., Kolano, M. and Szczygielski, M. (2016), "Preliminary Application of X-ray Computed Tomograph on Characterisation of Polish Gas Shale Mechanical Properties", Rock Mech. Rock Eng., 49(12), 4935-4943. https://doi.org/10.1007/s00603-016-1045-6.
  6. Diaz, M., Kim, K.Y., Yeom, S., Zhuang, L., Park, S. and Min, K.B. (2017), "Surface roughness characterization of open and closed rock joints in deep cores using X-ray computed tomography", Int. J. Rock Mech. Min. Sci., 98, 10-19. https://doi.org/10.1016/j.ijrmms.2017.07.001.
  7. Einstein, H.H. and Hirschfeld, R.C. (1973), "Model studies on mechanics of jointed rock", J. Soil Mech. Found. Div. ASCE, 99, 229-248. https://doi.org/10.1061/JSFEAQ.0001859
  8. Feng, X.T., Chen, S.L. and Zhou H. (2004), "Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion", Int. J. Rock Mech. Min. Sci., 41(2), 181-192. https://doi.org/10.1016/S1365-1609(03)00059-5.
  9. Ge, X.R., Ren, J.X., Pu, Y.B., Ma, G.W. and Zhu, Y.L. (2001), "Real-in time CT test of the rock meso-damage propagation law", Sci. China (Ser. E), 44(3), 328-336. https://doi.org/10.1007/BF02916710.
  10. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/sem.2018.68.4.507.
  11. Haeri, H., Sarfarazi, V., Zhu, Z. and Moosavi, E. (2019a), "Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials", Struct. Eng. Mech., 69(1), 11-20. https://doi.org/10.12989/sem.2019.69.1.011.
  12. Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, MF. (2019b), "Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression", Smart Struct. Syst., 23(5), 479-493. https://doi.org/10.12989/sss.2019.23.5.479.
  13. Hirono, T., Takahashi, M. and Nakashima, S. (2003), "In situ visualization of fluid flow image within deformed rock by X-ray CT", Eng. Geol., 70, 37-46. https://doi.org/10.1016/S0013-7952(03)00074-7.
  14. Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017a), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007.
  15. Huang, S., Liu, D., Yao, Y., Gan, Q., Cai, Y. and Xu, L.(2017b), "Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing", J. Nat. Gas. Sci. Eng., 43, 69-80. https://doi.org/10.1016/j.jngse.2017.03.022.
  16. Huang, Y.H. and Yang, S.Q. (2018a), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214.
  17. Huang, Y.H., Yang, S.Q., Hall, M.R., Tian, W.L. and Yin, P.F. (2018b), "Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity", Arch. Civ. Mech. Eng., 18(4), 1359-1373. https://doi.org/10.1016/j.acme.2018.04.005.
  18. Kawakata, H., Cho, A., Kiyama, T., T. Yanagidani, K. Kusunose, M. Shimada(1999), "Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan", Tectonophysics, 313(3), 293-305. https://doi.org/10.1016/S0040-1951(99)00205-X.
  19. Kou, M.M., Liu, X.R., Tang, S.D. and Wang, Y. (2019a), "3-D X-ray Computed Tomography on Failure Characteristics of Rock-like Materials under Coupled Hydro-Mechanical Loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396.
  20. Kou, M., Han, D., Xiao, C. and Wang, Y. (2019b), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75. https://doi.org/10.12989/sem.2019.71.1.065.
  21. Kou, M., Lian, Y.J. and Wang, Y.T. (2019c), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model", Eng. Fract. Mech., 212, 41-56. https://doi.org/10.1016/j.engfracmech.2019.03.012
  22. Li, X. and Chen, J. (2016), "An extended cohesive damage model for simulating multicrack propagation in fibre composites", Compos. Struct., 143, 1-8. https://doi.org/10.1016/j.compstruct.2016.02.026.
  23. Li, X. and Chen, J. (2017a), "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759. https://doi.org/10.1016/j.cma.2016.11.029.
  24. Li, X., and Chen, J. (2017b), "A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model", Compos. Struct., 160, 712-721. https://doi.org/10.1016/j.compstruct.2016.10.098.
  25. Liu, Y., Dai, F., Dong, L., Xu, N. and Feng, P. (2018), "Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters", Rock Mech. Rock Eng., 51(1), 47-68. https://doi.org/10.1007/s00603-017-1327-7.
  26. Meier, T., Rybacki, E., Backers, T. and Dresen, G. (2015), "Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale", Rock Mech. Rock Eng., 48(4), 1535-1546. https://doi.org/10.1007/s00603-014-0654-1.
  27. Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.
  28. Song, Z., Konietzky, H. and Fruhwirt, T. (2018), "Hysteresis energy-based failure indicators for concrete and brittle rocks under the condition of fatigue loading", Int J Fatigue, 114, 298-310. https://doi.org/10.1016/j.ijfatigue.2018.06.001.
  29. Song, Z., Konietzky, H. and Herbst, M. (2019a), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14, 955-971. https://doi.org/10.1007/s11440-018-0723-9.
  30. Song, Z., Fruhwirt, T. and Konietzky, H. (2019b), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383.
  31. Silva, B.G.D. and Einstein, H.H. (2014), "Finite element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress". Int. J. Solids Struct., 51(23-24), 4122-4136. https://doi.org/10.1016/j.ijsolstr.2014.08.006.
  32. Sufian, A., Russell, A.R. (2013), "Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT", Int. J. Rock Mech. Min. Sci., 57, 119-131. https://doi.org/10.1016/j.ijrmms.2012.07.021.
  33. Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013.
  34. Wang, L., Xu, J. and Wang, J. (2017a), "Static and dynamic Green's functions in peridynamics", J. Elast., 126, 95-125. https://doi.org/10.1007/s10659-016-9583-4.
  35. Wang, Y., Zhou, X., Shou, Y. (2017b), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019.
  36. Wang, Y., Li, C.H., Hao, J. and Zhou, R.Q. (2018a), "X-ray micro-tomography for investigation of meso-structural changes and crack evolution in Longmaxi formation shale during compressive deformation", J. Petrol. Sci. Eng, 164, 278-288. https://doi.org/10.1016/j.petrol.2018.01.079.
  37. Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018b), "A 3D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.
  38. Wang, L. and Abeyaratne, R. (2018c), "A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models", J. Mech. Phys. Solids, 116, 334-349. https://doi.org/10.1016/j.jmps.2018.03.028.
  39. Wang, Y., Liu, B. and Qi, Y. (2018), "A Risk Evaluation Method with an Improved Scale for Tunnel Engineering", Abab. J. Sci. Eng., 43, 2053-2067. https://doi.org/10.1007/s13369-017-2974-4.
  40. Wang, Y., Li, C.H. and Hu, Y.Z. (2019a), "3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography (CT)", Eng. Geol., 248, 61-69. https://doi.org/10.1016/j.enggeo.2018.11.004.
  41. Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks", Eur. J. Mech. A-Solid, 73, 282-305. https://doi.org/10.1016/j.euromechsol.2018.09.007.
  42. Wang, Y.T., Zhou, X.P. and Kou, M.M. (2019c), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193. https://doi.org/10.1007/s11440-018-0709-7.
  43. Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019d), "A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites", Mech. Mater., 128, 105-116. https://doi.org/10.1016/j.mechmat.2018.07.013.
  44. Wang, S., Li, X., Yao, J., Gong, F., Li, X., Du, K., Tao, M., Huang, L. and Du, S. (2019e), "Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock", Int. J. Rock Mech. Min. Sci., 122, 104063. https://doi.org/10.1016/j.ijrmms.2019.104063.
  45. Wang, L. and Wang, J. (2019f), "On the Invariance of Governing Equations of Current Nonlocal Theories of Elasticity Under Coordinate Transformation and Displacement Gauge Change", J. Elast., 137, 237-246. https://doi.org/10.1007/s10659-018-09715-7.
  46. Wang, S., Huang, L. and Li, X. (2020), "Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress", Tunnel. Undergr. Sp. Tech., 96, 103195. https://doi.org/10.1016/j.tust.2019.103195.
  47. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
  48. Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: part I. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
  49. Yang, S.Q., Ju, Y., Gao, F. and Gui, Y.L. (2016), "Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures", Rock Mech. Rock Eng., 49(11), 4227-4244. https://doi.org/10.1007/s00603-016-1040-y.
  50. Yang, S.Q. and Huang, Y.H. (2017), "An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures", Environ. Earth Sci., 76(10), 364. https://doi.org/10.1007/s12665-017-6696-4.
  51. Yang, S.Q. (2018), "Fracturing mechanism of compressed hollow-cylinder sandstone evaluated by X-ray micro-CT scanning", Rock Mech. Rock Eng., 51(7), 2033-2053. https://doi.org/10.1007/s00603-018-1466-5.
  52. Yu, L. and Pan, B. (2017), "Color stereo-digital image correlation method using a single 3CCD color camera", Exp. Mech., 57(4), 649-657. https://doi.org/10.1007/s11340-017-0253-7.
  53. Yu, L., Tao, R. and Lubineau, G. (2019), "Accurate 3D shape, displacement and deformation measurement using a smartphone", Sensors, 19(3), 719. https://doi.org/10.3390/s19030719.
  54. Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D X-ray computed tomography", Eng. Geol., 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017.
  55. Zhao, G.F., Russell, A.R., Zhao, X. and Khalili, N. (2014), "Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT", Int. J. Solids Struct., 51, 1587-1600. https://doi.org/10.1016/j.ijsolstr.2014.01.012.
  56. Zhang, R., Ai, T., Ren, L. and Li, G. (2019), "Failure characterization of three typical coal-bearing formation rocks using acoustic emission monitoring and X-ray computed tomography techniques", Rock Mech. Rock Eng., 52(6), 1945-1958. https://doi.org/10.1007/s00603-018-1677-9.
  57. Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theor. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005.
  58. Zhou, X.P., Cheng, H. and Feng, Y.F. (2014), "An Experimental Study of Crack Coalescence Behaviour in Rock-like Materials Containing Multiple Flaws Under Uniaxial Compression", Rock Mech. Rock Eng., 47(6), 1961-1986. https://doi.org/10.1007/s00603-013-0511-7.
  59. Zhuang, X., Chun, J. and Zhu, H. (2014), "A comparative study on unfilled and filled crack propagation for rock-like brittle material", Theor. Appl. Fract. Mech., 72, 110-120. https://doi.org/10.1016/j.tafmec.2014.04.004.
  60. Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Liu, F.N. (2019), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4.
  61. Zhou, Z., Cai, X., Ma, D., Chen, L., Wang, S. and Tan L. (2018), "Dynamic tensile properties of sandstone subjected to wetting and drying cycles", Constr. Build Mater., 182: 215-232. https://doi.org/10.1016/j.conbuildmat.2018.06.056.
  62. Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27. https://doi.org/10.1007/s00603-019-01980-9.