Acknowledgement
The research was supported by the EFOP-3.6.1-2016- 16-00011 "Younger and Renewing University - Innovative Knowledge City - institutional development of the University of Miskolc aiming at intelligent specialisation" project implemented in the framework of the Széchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.
References
- American Petroleum Institute API (1987), Bulletin on design of flat plate structures. Bulletin 2V. Washington.
- Bourada M., A. Bouadi, A.A. Bousahla, A. Senouci, F. Bourada, A. Tounsi and S.R. Mahmoud (2019), "Buckling behavior of rectangular plates under uniaxial and biaxial compression", Struct. Eng. Mech., 70(1), 113-123. https://doi.org/10.12989/sem.2019.70.1.113
- COSTCOMP (1990), Programm zur Berechnung der Schweisskosten. Deutscher Verlag fur Schweisstechnik, Dusseldorf.
- Eurocode 3 (2005), Design of Steel Structures -Part 1-9: Fatigue; European Committee for Standardization (CEN).
- Faiza K., D. Lamia, S. Mohamed, T. Abdelouahed and Mahmoud S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446, https://doi.org/10.12989/sem.2017.63.4.439
- Farkas J., Jarmai K. (1997), Analysis and Optimum Design of Metal Structures. Balkema, Rotterdam-Brookfield.
- Farkas J., Jarmai K. (2000), "Minimum cost design and comparison of uniaxially compressed plates with welded flat-, L- and trapezoidal stiffeners", Welding in the World, 44(3), 47-51.
- Farkas J., Jarmai K. (2003), Economic Design of Metal Structures, Millpress, Rotterdam.
- Farkas J., Simoes M.C. and Jarmai K. (2005), "Minimum cost design of a welded stiffened square plate loaded by biaxial compression", Struct. Multidisciplinary Optimization, 29(4), 298-303. https://doi.org/10.1007/s00158-004-0385-0.
- Farkas J, Jarmai K. (2013), Optimum Design of Steel Structures, Springer Verlag, Heidelberg, Germany.
- Fernandes G.R. and Neto J.R. (2015), "Analysis of stiffened plates composed by different materials by the boundary element method", Struct. Eng. Mech., 56(4), 605-623. https://doi.org/10.12989/sem.2015.56.4.605
- Georgioudakis M., Lagaros N.D. and Papadrakakis M. (2017), "Probabilistic shape design optimization of structural components under fatigue", Comput. Struct., 182, 252-266. https://doi.org/10.1016/j.compstruc.2016.12.008
- Hadidi A. and Rafiee A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
- Hazim G. N., Jarmai K. (2019), "Kinematic-based structural optimization of robots", Pollack Periodica 14(3), 213-222. https://doi.org/10.1556/606.2019.14.3.20.
- Hooke, R.; Jeeves, T.A. (1961), "'Direct search' solution of numerical and statistical problems", J. Assoc. Comput. Machinery (ACM). 8(2), 212-229. https://doi.org/10.1145/321062.321069
- Jarmai K., Snyman J.A., Farkas J. (2006), "Minimum cost design of a welded orthogonally stiffened cylindrical shell", Comput. Struct., 84(12),787-797. https://doi.org/10.1016/j.compstruc.2006.01.002
- Ji Jin, Ding Xiaohong, Xiong Min (2014), "Optimal stiffener layout of plate/shell structures by bionic growth method", Comput. Struct., 135(15), 88-99. https://doi.org/10.1016/j.compstruc.2014.01.022
- Kaveh A., Kalateh-Ahani M. and Fahimi-Farzam M. (2014), "Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach", Earthq. Struct., 7(3), 271-294. https://doi.org/10.12989/eas.2014.7.3.271
- Kaveh A., Fahimi-Farzam M. and Kalateh-Ahani M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage", Smart Struct. Syst., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001
- Kim B.J., Y.M. Park, K. Kim and B.H. Choi (2019), "Web bend-buckling strength of plate girders with two longitudinal web stiffeners", Struct. Eng. Mech., 69(4), 383-397. https://doi.org/10.12989/sem.2019.69.4.383
- Kim H.S., Park Y.M., Kim B.J. and Kim K. (2018), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., 65(2), 141-154. https://doi.org/10.12989/sem.2018.65.2.141
- Kovacs Gy., Farkas J. (2017), "Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates", Struct. Eng. Mech., 61(4), 475-481. https://doi.org/10.12989/SEM.2017.61.4.475
- Mikami I, Niwa K. (1996), "Ultimate compressive strength of orthogonally stiffened steel plates", J. Struct. Engng ASCE, 122(6), 674-682. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(674)
- Mittelstedt C. (2008), "Explicit analysis and design equations for buckling loads and minimum stiffness requirements of orthotropic and isotropic plates under compressive load braced by longitudinal stiffeners", Thin-Wall. Struct., 46(12), 1409-1429. https://doi.org/10.1016/j.tws.2008.03.007
- Nguyen-Thoi T. et al. (2013), "Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements", Comput. Struct., 125, 100-113. https://doi.org/10.1016/j.compstruc.2013.04.027
- Paik J.K., Thayamballi A.K., Kim B.J. (2001), "Large deflection orthotropic plate approach to develop ultimate strength formulations for stiffened panels under combined biaxial compression/tension and lateral pressure", Thin-Wall. Struct. 39(3), 215-246. https://doi.org/10.1016/S0263-8231(00)00059-8
- Kim D.K., Poh B.Y., Lee J.R. and Paik J.K. (2018), "Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation", Struct. Eng. Mech., 68(2), 247-259. https://doi.org/10.12989/sem.2018.68.2.247
- Recommendations on Fatigue of Welded Components of the International Institute of Welding (2008), Doc. IIW-1823-07, ex. XIII-2151r4-07/XV-1254r4-07.
- Remil A., K.H. Benrahou, K. Draiche, A.A. Bousahla and A. Tounsi (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct. Eng. Mech., 70(3), 325-337. https://doi.org/10.12989/sem.2019.70.3.325
- Rosenbrock H.H. (1960), "An automatic method for finding the greatest or least value of a function", Comput. J., 3(3), 175-184. https://doi.org/10.1093/comjnl/3.3.175
- Simoes L.M.C., Farkas J, Jarmai K. (2015), "Optimization of a cylindrical shell housing a belt-conveyor bridge", Comput. Struct., 147(15), 159-164. https://doi.org/10.1016/j.compstruc.2014.09.015
- Tran K.L., Douthe C, Sab K, Dallot J, Davaine L. (2014), "Buckling of stiffened curved panels under uniform axial compression", Construct. Steel Res., 103,140-147. https://doi.org/10.1016/j.jcsr.2014.07.004
- Virag Z, Jarmai K. (2003), "Parametric studies of uniaxially compressed and laterally loaded stiffened plates for minimum cost", International Conference on Metal Structures (ICMS), Millpress, Rotterdam, 237-242.
- Virag Z. (2006), "Optimum design of stiffened plates", Pollack Periodica, 1(1), 77-92. https://doi.org/10.1556/Pollack.1.2006.1.6
- Yoo CH, Choi BH, Ford EM. (2001), "Stiffness requirements for longitudinally stiffened box-girder flanges", ASCE J. Struct. Eng., 127(6), 705-711. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(705)
- Zula T., Kravanja S. and Klansek U. (2016), "MINLP optimization of a composite I beam floor system", Steel Compos. Struct., 22(5), 1163-1192. https://doi.org/10.12989/scs.2016.22.5.1163