DOI QR코드

DOI QR Code

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K. (Department of Civil Engineering, Koneru Lakshmaiah Education Foundation) ;
  • Raj, Shubham (Department of Civil Engineering, National Institute of Technology Patna) ;
  • Tiwari, Pratik (Department of Aerospace Engineering, Indian Institute of Technology Kharagpur) ;
  • Kumar, Ajay (Department of Civil Engineering, National Institute of Technology Patna) ;
  • Chakrabarti, Anupam (Department of Civil Engineering, Indian Institute of Technology Roorkee) ;
  • Pathak, K.K. (Department of Civil Engineering, Indian Institute of Technology (BHU))
  • 투고 : 2018.08.16
  • 심사 : 2019.11.30
  • 발행 : 2020.04.25

초록

The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

키워드

참고문헌

  1. Akbulut, H., Gundogdu, O., and Engl, M. (2010), "Buckling behaviors of laminated composite stepped flat columns", Finite Elem. Anal. Des., 46(12), 1061-1067. https://doi.org/10.1016/j.finel.2010.07.004
  2. Ansari, M. I., Kumar, A. and Bandyopadhyaya, R. (2019), "Bending analysis of doubly curved FGM sandwich rhombic conoids", Struct. Eng. Mech., 71(5), 469-483. https://doi.org/10.12989/sem.2019.71.5.469
  3. Aydin Komur, M., Sen, F., Atas, A., and Arslan, N. (2010), "Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM", Adv. Eng. Softw., 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005
  4. Baba, B.O. (2007), "Buckling behavior of laminated composite plates", J. Reinf. Plast. Compos., 26(16), 1637-1655. https://doi.org/10.1177/0731684407079515
  5. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine Mohamed, B., Mohamed, Z., and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6). https://doi.org/10.12989/sem.2018.66.6.761
  6. Cagdas, I.U. (2011), "Stability analysis of cross-ply laminated shells of revolution using a curved axisymmetric shell finite element", Thin-Walled Struct., 49(6), 732-742. https://doi.org/10.1016/j.tws.2011.01.005
  7. Chakrabarti, A., and Sheikh, A.H. (2003), "Buckling of Laminated Composite Plates by a New Element Based on Higher Order Shear Deformation Theory", Mech. Adv. Mater. Struct., 10(4), 303-317. https://doi.org/10.1080/10759410306754
  8. Chaubey, A. K., Kumar, A. and Chakrabarti, A. (2019a), "Static analyses of laminated rhombic conoids", Eng. Comput., 36(4), 1346-1363. https://doi.org/10.1108/EC-10-2018-0478
  9. Chaubey, A., Kumar, A., Fic, S., Barnat-Hunek, D. and Sadowska-Buraczewska, B. (2019b), "Hygrothermal Analysis of Laminated Composite Skew Conoids", Materials, 12(2), 225. https://doi.org/10.3390/ma12020225
  10. Chirica, I., and Beznea, E.F. (2012), "Buckling behavior of the multiple delaminated composite plates under shear and axial compression", Comput. Mater. Sci., 64, 173-178. https://doi.org/10.1016/j.commatsci.2012.03.032
  11. Dash, P., and Singh, B.N. (2012), "Buckling and post-buckling of laminated composite plates", Mech. Res. Commun., 46, 1-7. https://doi.org/10.1016/j.mechrescom.2012.08.002
  12. Demirbas, M.D. (2017), "Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity", Compos. Part B Eng., 131, 100-124. https://doi.org/10.1016/j.compositesb.2017.08.005
  13. Eswara Kumar. A, G R Sanjay Krishna, Shahid Afridi. P and Nagaraju M, (2017), "Finite Element Analysis of Laminated Hybrid Composite Pressure Vessels", J. Civil Eng. Technol., 8(4), 916-934.
  14. Fan, H.G., Chen, Z.P., Feng, W.Z., Zhou, F., Shen, X.L., and Cao, G.W. (2015), "Buckling of axial compressed cylindrical shells with stepwise variable thickness", Struct. Eng. Mech., 54(1), 87- 103. https://doi.org/10.12989/sem.2015.54.1.087
  15. Fares, M.E., and Zenkour, A.M. (1999), "Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44, 279- 289. https://doi.org/10.1016/S0263-8223(98)00135-4
  16. Fazzolari, F.A., Banerjee, J.R., and Boscolo, M. (2013), "Buckling of composite plate assemblies using higher order shear deformation theory-An exact method of solution", Thin-Walled Struct., 71, 18-34. https://doi.org/10.1016/j.tws.2013.04.017
  17. Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B Eng., 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031
  18. Grover, N., Maiti, D.K., and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  19. Hu, H.-T., and Tzeng, W.-L. (2000), "Buckling analysis of skew laminate plates subjected to uniaxial inplane loads", Thin-Walled Struct., 38, 53-77. https://doi.org/10.1016/S0263-8231(00)00029-X
  20. Hu, H.T., Yang, C.H., and Lin, F.M. (2006), "Buckling analyses of composite laminate skew plates with material nonlinearity", Compos. Part B Eng., 37, 26-36. https://doi.org/10.1016/j.compositesb.2005.05.004
  21. Jalan, S. K., Rao, B. N., Murty, S. N. and Gopalakrishnan, S. (2019), "Evaluation of Elastic Properties for a Nanocomposite (Reinforced with SWCNT Agglomerates) Utilizing a Representative Volume Element", Trans. Indian Institute Metals, 72(4), 951-967. https://doi.org/10.1007/s12666-018-01557-0
  22. Jian-Fei Chen, and Zheng-An Xu, (1992), "Buckling of compound hyperbolic paraboloidal shells", Thin-Walled Struct., 13, 245- 257. https://doi.org/10.1016/0263-8231(92)90043-V
  23. Khalili, S.M.R., Abbaspour, P., and Malekzadeh Fard, K. (2013), "Buckling of non-ideal simply supported laminated plate on Pasternak foundation", Appl. Math. Comput., 219(12), 6420- 6430. https://doi.org/10.1016/j.amc.2012.12.056
  24. Khayat, M., Poorveis, D., Moradi, S., and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. http://dx.doi.org/10.12989/sem.2016.58.1.059
  25. Khdeir, A.A., and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Compos. Struct., 9, 259- 277. https://doi.org/10.1016/0263-8223(88)90048-7
  26. Kumar, A., Bhargava, P., and Chakrabarti, A. (2013), "Vibration of laminated composite skew hypar shells using higher order theory", Thin-Walled Struct., 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007
  27. Kumar, A. E., Navuri, K., Manideep, K. and Priyanka, M. (2018), "Effect of Thermal Environment on Buckling of Thick Cylinder Subjected to Combined Axial Compressive and External Pressure loads", Materials Today: Proceedings, 5(2), 3298-3305. https://doi.org/10.1016/j.matpr.2017.11.572
  28. Librescu, L., Khdeir, A.A., and Frederick, D. (1989), "A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling", Acta Mech., 76, 1-33. https://doi.org/10.1007/BF01175794
  29. Liu, L., Chua, L.P., and Ghista, D.N. (2007), "Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates", Compos. Struct., 78, 58-69. https://doi.org/10.1016/j.compstruct.2005.08.010
  30. Matsunaga, H. (2007), "Vibration and stability of cross-ply laminated composite shallow shells subjected to in-plane stresses", Compos. Struct., 78, 377-391. https://doi.org/10.1016/j.compstruct.2005.10.013
  31. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Comput. Struct., 89(7-8), 612- 625. https://doi.org/10.1016/j.compstruc.2011.01.005
  32. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  33. Pandit, M.K., Singh, B.N., and Sheikh, A.H. (2008), "Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory", Thin-Walled Struct., 46(11), 1183-1191. https://doi.org/10.1016/j.tws.2008.03.002
  34. Pradyumna, S., and Bandyopadhyay, J.N. (2010), "Buckling of laminated composite hypars and conoids using a higher-order theory", IES J. Part A Civ. Struct. Eng., 3(2), 85-95. https://doi.org/10.1080/19373260903491958
  35. Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  36. Reddy, J.N., and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
  37. Sajikumar, K. S., Kumar, N. A. and Rao, B. N. (2019), "Development and validation of finite elements for tubular bonded joints in composite structures", Recent Advances in Materials, Mechanics and Management: Proceedings of the 3rd International Conference on Materials, Mechanics and Management (IMMM 2017), July 13-15, 2017, Trivandrum, Kerala, India, CRC Press, 241.
  38. Seifi, R., Khoda-Yari, N., and Hosseini, H. (2012), "Study of critical buckling loads and modes of cross-ply laminated annular plates", Compos. Part B Eng., 43(2), 422-430. https://doi.org/10.1016/j.compositesb.2011.08.051
  39. Shadmehri, F., Hoa, S. V., and Hojjati, M. (2012), "Buckling of conical composite shells", Compos. Struct., 94(2), 787-792. https://doi.org/10.1016/j.compstruct.2011.09.016
  40. Sharghi, H., Shakouri, M., and Kouchakzadeh, M.A. (2016), "An analytical approach for buckling analysis of generally laminated conical shells under axial compression", Acta Mech., 227(4), 1181-1198. https://doi.org/10.1007/s00707-015-1549-2
  41. Srinivas, S., and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
  42. Srinivasa, C.V., Suresh, Y.J., and Prema Kumar, W.P. (2012), "Buckling Studies on Laminated Composite Skew Plates", Int. J. Comput. Appl., 37(1), 35-47. https://doi.org/10.5120/4575-6612
  43. Srinivasa, C. V., Prema Kumar, W.P., Prathap Kumar, M.T., Bangar, A.R., Kumar, P., and Rudresh, M.S. (2017), "Experimental and numerical studies on buckling of laminated composite skew plates with circular holes under uniaxial compression", Mech. Adv. Mater. Struct., 24(4), 304-317. https://doi.org/10.1080/15376494.2016.1142023
  44. Tafreshi, A. (2002), "Buckling and post-buckling analysis of composite cylindrical shells with cutouts subjected to internal pressure and axial compression loads", Int. J. Press. Vessel. Pip. https://doi.org/10.1016/S0308-0161(02)00026-1
  45. Tang, Y., and Wang, X. (2011), "Buckling of symmetrically laminated rectangular plates under parabolic edge compressions", Int. J. Mech. Sci., 53(2), 91-97. https://doi.org/10.1016/j.ijmecsci.2010.11.005
  46. Topal, U., and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin-Walled Struct., 45, 356-368. https://doi.org/10.1016/j.tws.2007.06.002
  47. Vescovini, R., and Dozio, L. (2015), "Exact refined buckling solutions for laminated plates under uniaxial and biaxial loads", Compos. Struct., 127, 356-368. https://doi.org/10.1016/j.compstruct.2015.03.003
  48. Wang, S. (1997), "Buckling of thin skew fibre-reinforced composite laminates", Thin-Walled Struct., 28(1), 21-41. https://doi.org/10.1016/S0263-8231(97)87375-2
  49. Wang, Z., and Sun, Q. (2014), "Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness", Acta Mech. Sin., 30(3), 418-429. https://doi.org/10.1007/s10409-014-0009-x
  50. Ye, H.L., Wang, W.W., Chen, N., and Sui, Y.K. (2017), "Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables", Acta Mech. Sin., 33(5), 899-911. https://doi.org/10.1007/s10409-017-0648-9
  51. Ye, J., and Soldatos, K.P. (1995), "Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels", Int. J. Solids Struct., 32(13), 1949-1962. https://doi.org/10.1016/0020-7683(94)00217-K
  52. Zhen, W., and Wanji, C. (2007), "Buckling analysis of angle-ply composite and sandwich plates by combination of geometric stiffness matrix", Comput. Mech., 39(6), 839-848. https://doi.org/10.1007/s00466-006-0073-6