References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sand wich plates with various boundary conditions", Steel Compos. Struct., 25, 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
- Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Ahouel, M., Houari, M. S. A., Bedia, E. A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Al-Basyouni, K. S., Tounsi, A. and Mahmoud, S. R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
- Baluch, M. H., Azad, A. K., & Khidir, M. A. (1984), "Technical theory of beams with normal strain", J. Eng. Mech., 110(8), 1233-1237. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:8(1233).
- Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. and Beg, O. A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
- Beldjelili, Y., Tounsi, A. and Mahmoud, S. R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Belkorissat, I., Houari, M. S. A., Tounsi, A., Bedia, E. A. and Mahmoud, S. R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
- Bennoun, M., Houari, M. S. A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
- Bhimaraddi, A. and Chandrashekhara, K. (1993), "Observations on higher-order beam theory", J. Aerosp. Eng., 6(4), 408-413. https://doi.org/10.1061/(ASCE)0893-1321(1993)6:4(408).
- Bickford. W.B. (1982), "A consistent higher order beam theory", Dev. Theoretical Appl. Mech., SECTAM, 11, 137-150, 1982. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0184967.
- Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Bouderba, B., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
- Boukhari, A., Atmane, H. A., Tounsi, A., Adda, B. and Mahmoud, S. R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
- Bounouara, F., Benrahou, K. H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
- Bourada, M., Kaci, A., Houari, M. S. A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
- Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
- Cammarata, R.C. and Sieradzki, K. (1994), "Surface and interface stresses", Annual Rev. Mater. Sci., 24(1), 215-234. https://doi.org/10.1146/annurev.pc.45.100194.001045.
- Chaht, F. L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O. A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Challamel, N. (2011), "Higher-order shear beam theories and enriched continuum", Mech. Res. Commun., 38(5), 388-392. https://doi.org/10.1016/j.mechrescom.2011.05.004.
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", Appl. Mech., ASME, 33(2), 335-340, 1966. https://doi.org/10.1115/1.3625046.
- Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53(8), 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012.
- Eisenberger, M. (2003), "An exact high order beam element", Comput. Struct., 81(3), 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Ghugal, Y. M. and Sharma, R. (2009), "A hyperbolic shear deformation theory for flexure and vibration of thick isotropic beams", J. Comput. Methods, 6(04), 585-604. https://doi.org/10.1142/S0219876209002017.
- Ghugal, Y. M. and Sharma, R. (2011), "A refined shear deformation theory for flexure of thick beams", Latin American J. Solids Struct., 8(2), 183-195. https://doi.org/10.1590/S1679-78252011000200005.
- Gibbs, J. W. (1906). The Scientific Papers of J. Willard Gibbs (Vol. 1), Longmans, Green and Company., Harlow, United Kingdom.
- Gurtin, M. E. and Murdoch, A. I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.
- Haiss, W. (2001), "Surface stress of clean and adsorbate-covered solids", Reports on Progress in Physics, 64(5), 591. https://doi.org/10.1088/0034-4885/64/5/201.
- He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001.
- Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
- Heyliger, P. R. and Reddy, J. N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1.
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
- Lu, Y., Ganesan, Y. and Lou, J. (2010), "A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device", Experimental Mech., 50(1), 47-54. https://doi.org/10.1007/s11340-009-9222-0
- Kant, T. and Gupta, A. (1988), "A finite element model for a higher-order shear-deformable beam theory", J. Sound Vib., 125(2), 193-202. https://doi.org/10.1016/0022-460X(88)90278-7.
- Karama, M., Afaq, K. S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structure model with transverse shear stress continuity", J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Khdeir, A. A. and Reddy, J. N. (1997), "An exact solution for the bending of thin and thick cross-ply laminated beams", Compos. Struct., 37(2), 195-203. https://doi.org/10.1016/S0263-8223(97)80012-8.
- Levinson, M. (1981), "Further results of a new beam theory", J. Sound Vib., 77(3), 440-444. https://doi.org/10.1016/S0022-460X(81)80180-0.
- Matsunaga, H. (1996), "Buckling instabilities of thick elastic beams subjected to axial stresses", Comput. Struct., 59(5), 859-868. https://doi.org/10.1016/0045-7949(95)00306-1.
- Matsunaga, H. (1996), "Free vibration and stability of thin elastic beams subjected to axial forces", J. Sound Vib., 191(5), 917-933. https://doi.org/10.1006/jsvi.1996.0163.
- Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415.
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/ 10.12989/scs.2017.25.2.157.
- Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
- Wang, G. F. and Feng, X. Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Physics D Appl. Physics, 42(15), 155411. https://doi.org/10.1186/1556-276X-7-201.
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301
- Murty, K. (1984), "Toward a consistent beam theory", AIAA J., 22(6), 811-816. https://doi.org/10.2514/3.8685.
- Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
- Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641.
- Rao, S. R. and Ganesan, N. (1995), "Dynamic response of tapered composite beams using higher order shear deformation theory", J. Sound Vib., 187(5), 737-756. https://doi.org/10.1006/jsvi.1995.0560.
- Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J. N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons., NJ, U.S.A.
- Rehfield, L.W. and Murthy, P.L.N. (1982), "Toward a new engineering theory of bending- Fundamentals", AIAA J., 20(5), 693-699. https://doi.org/10.2514/3.7938.
- Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289.
- Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82(4), 535-537. https://doi.org/10.1063/1.1539929.
- Shenoy, V. B. (2002), "Size-dependent rigidities of nanosized torsional elements", J. Solids Struct., 39(15), 4039-4052. https://doi.org/10.1016/S0020-7683(02)00261-5.
- Shenoy, V. B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104.
- Soldatos, K. P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
- Stein, M. (1989), "Vibration of beams and plate strips with three-dimensional flexibility", J. Appl. Mech., 56(1), 228-231. https://doi.org/10.1115/1.3176054.
- Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002.
- Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J. I., Bai, H.L. and Jiang, E. Y. (2002), "Bond-order-bond-length- bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid", J. Phys. Condensed Matt., 14(34), 7781. https://doi.org/10.1088/0953-8984/14/34/301.
- Tebboune, W., Benrahou, K. H., Houari, M. S. A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443.
- Thai, H. T. and Vo, T. P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Thai, S., Thai, H. T., Vo, T. P. and Patel, V. I. (2017), "Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis", Comput. Struct., 190, 219-241. https://doi.org/10.1016/j.compstruc.2017.05.014.
- Thai, S., Thai, H. T., Vo, T. P. and Reddy, J. N. (2017), "Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeomertic analysis", Eng. Struct., 150, 905-917. https://doi.org/10.1016/j.engstruct.2017.07.073.
- Timoshenko, S. P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh Dublin Philosophical Mag. J. Sci., 41(245), 744-746. https://doi.org/10.1080/14786442108636264.
- Tounsi, A., Houari, M. S. A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
- Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Trinh, L. C., Nguyen, H. X., Vo, T. P. and Nguyen, T. K. (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.
- Trinh, L. C., Vo, T. P., Thai, H. T. and Mantari, J. L. (2017), "Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads", Compos. Part B Eng., 124, 218-241. https://doi.org/10.1016/j.compositesb.2017.05.042.
- Trinh, L. C., Vo, T. P., Thai, H. T. and Nguyen, T. K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
- Vlasov, V.Z. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translations, Jerusalem.
- Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", European J. Mech. A/Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.
- Wang, G. F. and Feng, X. Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.
- Yahia, S. A., Atmane, H. A., Houari, M. S. A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
- Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693