DOI QR코드

DOI QR Code

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid (Structures and New Advanced Materials Laboratory Department of Mechanical Engineering, University of Zanjan) ;
  • Asemani, S. Samane (Department of Mechanical Engineering, University of Tarbiat Modares)
  • Received : 2017.10.02
  • Accepted : 2019.12.14
  • Published : 2020.04.25

Abstract

The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sand wich plates with various boundary conditions", Steel Compos. Struct., 25, 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Ahouel, M., Houari, M. S. A., Bedia, E. A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  4. Al-Basyouni, K. S., Tounsi, A. and Mahmoud, S. R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  5. Baluch, M. H., Azad, A. K., & Khidir, M. A. (1984), "Technical theory of beams with normal strain", J. Eng. Mech., 110(8), 1233-1237. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:8(1233).
  6. Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. and Beg, O. A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  7. Beldjelili, Y., Tounsi, A. and Mahmoud, S. R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  8. Belkorissat, I., Houari, M. S. A., Tounsi, A., Bedia, E. A. and Mahmoud, S. R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  9. Bennoun, M., Houari, M. S. A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  10. Bhimaraddi, A. and Chandrashekhara, K. (1993), "Observations on higher-order beam theory", J. Aerosp. Eng., 6(4), 408-413. https://doi.org/10.1061/(ASCE)0893-1321(1993)6:4(408).
  11. Bickford. W.B. (1982), "A consistent higher order beam theory", Dev. Theoretical Appl. Mech., SECTAM, 11, 137-150, 1982. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0184967.
  12. Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  13. Bouderba, B., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  14. Boukhari, A., Atmane, H. A., Tounsi, A., Adda, B. and Mahmoud, S. R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  15. Bounouara, F., Benrahou, K. H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  16. Bourada, M., Kaci, A., Houari, M. S. A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  17. Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  18. Cammarata, R.C. and Sieradzki, K. (1994), "Surface and interface stresses", Annual Rev. Mater. Sci., 24(1), 215-234. https://doi.org/10.1146/annurev.pc.45.100194.001045.
  19. Chaht, F. L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O. A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  20. Challamel, N. (2011), "Higher-order shear beam theories and enriched continuum", Mech. Res. Commun., 38(5), 388-392. https://doi.org/10.1016/j.mechrescom.2011.05.004.
  21. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", Appl. Mech., ASME, 33(2), 335-340, 1966. https://doi.org/10.1115/1.3625046.
  22. Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53(8), 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012.
  23. Eisenberger, M. (2003), "An exact high order beam element", Comput. Struct., 81(3), 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8.
  24. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  25. Ghugal, Y. M. and Sharma, R. (2009), "A hyperbolic shear deformation theory for flexure and vibration of thick isotropic beams", J. Comput. Methods, 6(04), 585-604. https://doi.org/10.1142/S0219876209002017.
  26. Ghugal, Y. M. and Sharma, R. (2011), "A refined shear deformation theory for flexure of thick beams", Latin American J. Solids Struct., 8(2), 183-195. https://doi.org/10.1590/S1679-78252011000200005.
  27. Gibbs, J. W. (1906). The Scientific Papers of J. Willard Gibbs (Vol. 1), Longmans, Green and Company., Harlow, United Kingdom.
  28. Gurtin, M. E. and Murdoch, A. I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.
  29. Haiss, W. (2001), "Surface stress of clean and adsorbate-covered solids", Reports on Progress in Physics, 64(5), 591. https://doi.org/10.1088/0034-4885/64/5/201.
  30. He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001.
  31. Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
  32. Heyliger, P. R. and Reddy, J. N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1.
  33. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
  34. Lu, Y., Ganesan, Y. and Lou, J. (2010), "A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device", Experimental Mech., 50(1), 47-54. https://doi.org/10.1007/s11340-009-9222-0
  35. Kant, T. and Gupta, A. (1988), "A finite element model for a higher-order shear-deformable beam theory", J. Sound Vib., 125(2), 193-202. https://doi.org/10.1016/0022-460X(88)90278-7.
  36. Karama, M., Afaq, K. S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structure model with transverse shear stress continuity", J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  37. Khdeir, A. A. and Reddy, J. N. (1997), "An exact solution for the bending of thin and thick cross-ply laminated beams", Compos. Struct., 37(2), 195-203. https://doi.org/10.1016/S0263-8223(97)80012-8.
  38. Levinson, M. (1981), "Further results of a new beam theory", J. Sound Vib., 77(3), 440-444. https://doi.org/10.1016/S0022-460X(81)80180-0.
  39. Matsunaga, H. (1996), "Buckling instabilities of thick elastic beams subjected to axial stresses", Comput. Struct., 59(5), 859-868. https://doi.org/10.1016/0045-7949(95)00306-1.
  40. Matsunaga, H. (1996), "Free vibration and stability of thin elastic beams subjected to axial forces", J. Sound Vib., 191(5), 917-933. https://doi.org/10.1006/jsvi.1996.0163.
  41. Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415.
  42. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/ 10.12989/scs.2017.25.2.157.
  43. Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  44. Wang, G. F. and Feng, X. Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Physics D Appl. Physics, 42(15), 155411. https://doi.org/10.1186/1556-276X-7-201.
  45. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301
  46. Murty, K. (1984), "Toward a consistent beam theory", AIAA J., 22(6), 811-816. https://doi.org/10.2514/3.8685.
  47. Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
  48. Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641.
  49. Rao, S. R. and Ganesan, N. (1995), "Dynamic response of tapered composite beams using higher order shear deformation theory", J. Sound Vib., 187(5), 737-756. https://doi.org/10.1006/jsvi.1995.0560.
  50. Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  51. Reddy, J. N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons., NJ, U.S.A.
  52. Rehfield, L.W. and Murthy, P.L.N. (1982), "Toward a new engineering theory of bending- Fundamentals", AIAA J., 20(5), 693-699. https://doi.org/10.2514/3.7938.
  53. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289.
  54. Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82(4), 535-537. https://doi.org/10.1063/1.1539929.
  55. Shenoy, V. B. (2002), "Size-dependent rigidities of nanosized torsional elements", J. Solids Struct., 39(15), 4039-4052. https://doi.org/10.1016/S0020-7683(02)00261-5.
  56. Shenoy, V. B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104.
  57. Soldatos, K. P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
  58. Stein, M. (1989), "Vibration of beams and plate strips with three-dimensional flexibility", J. Appl. Mech., 56(1), 228-231. https://doi.org/10.1115/1.3176054.
  59. Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002.
  60. Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J. I., Bai, H.L. and Jiang, E. Y. (2002), "Bond-order-bond-length- bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid", J. Phys. Condensed Matt., 14(34), 7781. https://doi.org/10.1088/0953-8984/14/34/301.
  61. Tebboune, W., Benrahou, K. H., Houari, M. S. A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443.
  62. Thai, H. T. and Vo, T. P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  63. Thai, S., Thai, H. T., Vo, T. P. and Patel, V. I. (2017), "Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis", Comput. Struct., 190, 219-241. https://doi.org/10.1016/j.compstruc.2017.05.014.
  64. Thai, S., Thai, H. T., Vo, T. P. and Reddy, J. N. (2017), "Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeomertic analysis", Eng. Struct., 150, 905-917. https://doi.org/10.1016/j.engstruct.2017.07.073.
  65. Timoshenko, S. P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh Dublin Philosophical Mag. J. Sci., 41(245), 744-746. https://doi.org/10.1080/14786442108636264.
  66. Tounsi, A., Houari, M. S. A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  67. Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  68. Trinh, L. C., Nguyen, H. X., Vo, T. P. and Nguyen, T. K. (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.
  69. Trinh, L. C., Vo, T. P., Thai, H. T. and Mantari, J. L. (2017), "Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads", Compos. Part B Eng., 124, 218-241. https://doi.org/10.1016/j.compositesb.2017.05.042.
  70. Trinh, L. C., Vo, T. P., Thai, H. T. and Nguyen, T. K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
  71. Vlasov, V.Z. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translations, Jerusalem.
  72. Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", European J. Mech. A/Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.
  73. Wang, G. F. and Feng, X. Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.
  74. Yahia, S. A., Atmane, H. A., Houari, M. S. A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  75. Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693