DOI QR코드

DOI QR Code

Accident Information Based Reliability Estimation Model for Car Insurance Smart Contract

자동차보험용 스마트 컨트랙트를 위한 사고정보 기반 신뢰도 산정 모델

  • 이수진 (한양대학교 전자공학과) ;
  • 김애영 (한양대학교 ERICA 공학기술연구소) ;
  • 서승현 (한양대학교 ERICA 캠퍼스 전자공학부)
  • Received : 2019.10.01
  • Accepted : 2019.12.26
  • Published : 2020.04.30

Abstract

In order to reduce the time and cost used in insurance processing, studies have been actively carried out to apply blockchain smart contract technology to car insurance. However, by using traffic data that is insufficient to prove accidents, existing studies are being exposed to the risk of insurance fraud, such as forgery and overstated damage by malicious insurers. To solve this problem, we propose an accident data-based reliability estimation model by using both various types of data through sensors, RSUs, and IoT devices embedded in automobiles and smart contracts. In particular, the regression model was applied in consideration of the weight estimation according to the type of traffic accident data and the reliability estimation model trained according to various accident situations. The proposed model is expected to effectively reduce fraud and insurance litigation while providing transparency in the insurance process and streamlining it is well.

최근 보험 처리과정에서 소용되는 시간과 비용을 절감하고자, 자동차 보험에 블록체인 스마트 컨트랙트 기술을 도입하는 연구들이 활발하다. 그러나 기존의 연구들은 사고를 입증하기에 미흡한 수준의 교통 사고관련 데이터의 활용으로 악의적인 보험자의 사고 위조, 손상 확대 등의 보험사기 위협에 노출되어 있다. 이를 해결하고자, 본 논문에서는 자동차에 탑재된 센서, RSU, IoT 기기 등을 통한 다양한 종류의 데이터와 차량용 스마트 컨트랙트를 이용하여 사고데이터 기반 신뢰도 산정 모델을 제안한다. 특히 교통사고 데이터의 종류 및 상태에 따라 가중치를 달리하고, 다양한 사고 상황에 따라 학습되는 신뢰도 산정 모델을 고려하여 회귀모델을 적용했다. 제안 모델은 보험 처리과정의 투명성, 보험 처리 과정의 간소화와 같은 기존 장점을 유지하며 효과적인 보험사기 차단, 보험 소송의 감소의 효과를 보일 것으로 기대된다.

Keywords

References

  1. H. Kim and H. Kwon, "Blockchain Adoption in the Korean Insurancee Industry: Review and Response," Korea Insurance Research Institute, 2018.
  2. Financial Supervisory Service [Internet], http://m.fss.or.kr: 8000/insucop/"
  3. kasko2go AG, "go2solution ICO White paper," 2018.
  4. Flavio Bonomi, "Fog Computing and Its Role in the Internet of Things," 2012.
  5. C. H. Mason and W. D. Perreault Jr., "Collinearity, Power, and Interpretation of Multiple Regression Analysis," Journal of Marketing Research, Vol.28, No.3, pp.268-280, 1991. https://doi.org/10.2307/3172863
  6. F. Lambertu, V. Gattescgu, C. Demartini, M. Pelissier, A, Gomez, and V. Santamaria, "Blockchains Can Work for Car Insurance: Using Smart Contracts and Sensors to Provide On-demand Coverage," IEEE Consumer Electronics Magazine, Vol.7, No.4, pp.72-81, 2018. https://doi.org/10.1109/mce.2018.2816247
  7. L. Bader, J. C. Burger, R. Matzutt, and K. Wehrle, "Smart Contract-Based Car Insurancce Policies," IEEE Globecom Wrokshops, 2018.
  8. A. Ometov, V. Petrov, S. Bezzateev, S. Andreev, Y. Koucheryavy, and M. Gerla, "Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications," IEEE Network, 2019.
  9. G. De La Torre, P. Rad, and K.-K. R. Choo, "Driverless Vehicle Security: Challenges and Future Research Opportunities," Future Gener. Comput. Syst., 2018.
  10. I. olusi, E. Marks, and M. Hallowell, "Wearable Technology for Personalized Construction Dafety Monitoring and Trending: Review of Applicable Devices," Autom. Constr. 2018.
  11. Wach, W., M. Gidlewski, and L. Prochowski, "Modelling Reliability of Vehicle Collision Reconstruction Based on the Law of Conservation of Momentum and Burg Equations," 20th International Scientific Conference TRANSPORT MEANS, 2016.
  12. Y. Kim and H. Lee, "A Comparison Study for the Pricing of Automobile Insurance Premium Based on Credibility," Communications for Statistical Applications and Methods, Vol.17, pp.713-724, 2010. https://doi.org/10.5351/CKSS.2010.17.5.713