열병합발전의 성능 모니터링을 위한 발전효율 모델

Power Generation Efficiency Model for Performance Monitoring of Combined Heat and Power Plant

  • 발행 : 2020.12.30

초록

화력발전소에서 장치 이상이나 열화로 인해 발전효율이 저하될 때 운전자가 이를 감지하고 적시에 조처를 취할 수 있도록 지원하는 성능관리시스템은 무엇보다도 발전효율을 정확하게 예측하는 것이 중요하다. 공정용 증기 또는 난방용열(이하 공정용 증기로 단일화 표기)과 전기를 동시에 생산하는 열병합발전에 대해 지금까지 다수의 발전효율 모델들이 제안되었는데, 대부분 공정용 증기의 가치를 제대로 평가하지 못해 발전효율을 정확하게 예측하지 못했다. 본 연구에서는 발전효율 예측 모델의 계수를 조업 데이터를 통해 결정하고, 공정용 증기의 전기 환산효율(ECE, Electricity Conversion Efficiency) 모델을 적용함으로써 공정용 증기의 가치를 정확하게 평가할 수 있도록 하였다. 본 방법을 열병합발전의 설계 데이터에 적용하여 발전부하에 대한 발전효율의 추세선을 구한 결과 R2가 99.91%로 회귀 수준이 매우 높았다. 본 결과로부터 조업 데이터를 이용한 ECE 모델 계수 결정 방법이 발전효율을 정확하게 예측하여 열병합발전에 대한 성능 모니터링에 적합함을 확인할 수 있었다.

The performance monitoring system in the power plant should have the capability to estimate power generation efficiency accurately. Several power generation efficiency models have been proposed for the combined heat and power (CHP) plant which produces both electricity and process steam(or heating energy, hereinafter expressed by process steam only). However, most of the models are not sufficiently accurate due to the wrong evaluation of the process steam value. The study suggests Electricity Conversion Efficiency (ECE) model with determination of the heat rate of process steam using operational data. The suggested method is applied to the design data and the resulted trajectory curve of power generation efficiency meets the data closely with R2 99.91%. This result confirms that ECE model with determination of the model coefficient using the operational data estimate the efficiency so accurately that can be used for performance monitoring of CHP plant.

키워드

참고문헌

  1. Torchio M. F., 2013, Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power Plants, Energies, No.6, 2686-2798 https://doi.org/10.3390/en6052686
  2. Kumar R., 2017, A critical review on energy, exergy, exergoeconomic and economic analysis of thermal power plants, Engineering Science and Technology, an International Journal, Vol. 20, Issue 1, 283-292 https://doi.org/10.1016/j.jestch.2016.08.018
  3. Peltier R., Plant Efficiency: Begin with the Right Definition, Power Magazine 2010, available at https://www.powermag.com/plant-efficiency-begin-with-the-right-definitions/
  4. John H., 1997, Cogeneration ? Combined Heat and Power (CHP). 2nd ed. Malabar, FL: Krieger
  5. Catalog of CHP Technology; U. S. Environmental Protection Agency: Washington, DC, USA, 2008
  6. Kanoglu M. and Dincer I., 2009, Performance Assessment of Cogeneration Plants, Energy Conversion and management, Vol. 50, 76-81 https://doi.org/10.1016/j.enconman.2008.08.029
  7. Feng X., Cai Y-N, Qian L-L, 1998, A New Performance Criterion for Cogeneration System, Energy Conver. Management, No.39, 1607 https://doi.org/10.1016/S0196-8904(98)00037-5
  8. Can Gulen S., 2010, A Proposed Definition of CHP Efficiency, Power, No. 6
  9. Phylipsen G., Blok K., Worrell E., 1998, Handbook on International Comparisons of Energy Ef?ciency in the Manufacturing Industry. Department of Science, Technology and Society, Utrecht University, Utrecht
  10. The International Association for the Properties of Water and Steam, Industrial Formulation 97 for Thermodynamic Properties of Water and Steam, 2007