DOI QR코드

DOI QR Code

Fluidization Characteristics in Fluidized Bed Reactors Operated in Subatmospheric Pressure

대기압 이하에서 운전하는 유동층 반응기의 유동 특성

  • Park, Sounghee (Department of Energy Engineering, Woosuk University)
  • 박성희 (우석대학교 에너지공학과)
  • Received : 2020.02.10
  • Accepted : 2020.02.21
  • Published : 2020.05.01

Abstract

Fluidized bed reactors operated in subatmospheric pressure has been focused because several industrial applications such as vacuum drying and plasma cvd requires reduced pressure fludization. However, the hydrodynamics of fluidized beds in subatmospheric pressure has not been extensively investigated. The pressure drop in the fluidized bed has been measured with variation of downstream pressures from 1.33 to 101.3 kPa in the shallow and deep fluidized beds under the sub-atmospheric pressures. The obtained minimum fluidization velocity of powders is a function of pressure due to the changes of gas density and mean free path. We can experimentally determine the critical Knudsen number and the critical pressure to define the slip regime significantly to influence the hydrodynamics of fluidized beds.

최근 대기압이하 진공 압력 상태에서 운전되는 유동층 반응기는 진공건조 공정이나 플라즈마 화학증착과 같이 감압 유동화가 요구되기에 관심이 증대되어 왔다. 그러나 대기압 이하에서 운전되는 유동층의 수력학적 특성 연구는 많이 연구되지 않았다. 본 연구에서는 대기압 이하에서 운전하는 유동층의 압력강하를 층내 압력을 1.33 에서 101.3kPa 까지 변화시키며 측정하였다. 유동층의 운전 압력이 진공인 상태에서는 최소유동화속도가 압력이 감소함에 따라 증가하며, 이는 기체 밀도와 평균 자유경로 변화와 같은 slip 흐름에 의한 변화이다. 또한 기존의 상압 상태에서 운전되는 유동층의 최소유동화속도 상관식과 비교함으로써 압력 감소에 따른 slip 흐름의 영향 뚜렷하게 나타남을 가리키는 임계 Knudsen 수를 결정하였다. 이로부터 slip 흐름이 주도하기 시작하는 임계 압력을 실험적으로 결정하였다.

Keywords

References

  1. Kunii, D. and Levenspiel, O., Fludization Engineering, 2nd ed., Elsevier Inc., New York, NY(1991).
  2. Chitester, D. C., Kornosky, R. M., Fan, L. S. and Danko, J. P., "Characteristics of Fluidization at High Pressure," Chemical Engineering Science, 39(2), 253-261(1984). https://doi.org/10.1016/0009-2509(84)80025-1
  3. Kozanoglu, B. U., Vichez, J. A., Casal, J. and Arnaldos, J., "Drying of Solids in Vacuum Fluidized Bed," The Canadian J. of Chem. Eng., 80(3), 376-385(2002). https://doi.org/10.1002/cjce.5450800306
  4. Weerasiri, L. D., Das, S., Fabijanic, D. and Yang, W., "Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions," International Scholarly and Science Research & Innovation, 13, 656-660(2019).
  5. Rogers, T. and Morin, T. J., "Slip Flow in Fixed and Fludized Bed Plasma Reactors," Plasma Chemistry and Plasma Processing, 11, 203-228(1991). https://doi.org/10.1007/BF01447243
  6. Park, S. H. and Kim, S. D., "Plasma Surface Treatment of HDPE Powder in a Fluidized Bed Reactor," Polym. Bull., 33, 249-256 (1994). https://doi.org/10.1007/BF00297363
  7. Park, S. H. and Kim, S. D., "Oxygen Plasma Surface Treatment of Polymer Powder in a Fluidized Bed Reactor," Colloid Surface A., 133, 33-39(1998). https://doi.org/10.1016/S0927-7757(97)00109-X
  8. Song, L. H., Park, S. H., Jung, S. H., Kim, S. D. and Park, S. B., "Synthesis of Polyethylene Glycol-polystyrene Core-shell Structure Particles in a Plasma-fluidized Bed Reactor," Korean J. Chem. Eng., 28(2), 627-632(2011). https://doi.org/10.1007/s11814-010-0390-5
  9. Kawamura, S. and Suezawa, Y., "Mechanism of Gas Flow in a Fluidized Bed at Low Pressure," Kagaku Kogaku, 25, 524-530(1961). https://doi.org/10.1252/kakoronbunshu1953.25.524
  10. Germain, B. and Claudel, B., "Fluidization of Mean Pressures Less Than 30 Torr," Powder Technology, 13, 115-121(1975). https://doi.org/10.1016/0032-5910(75)87014-8
  11. Fletcher, J. V., Deo, M. D. and Hanson, F. V., "Fluidization of a Multi-sized Group B Sand At Reduced Pressure," Powder Technology, 76, 141-147(1993). https://doi.org/10.1016/S0032-5910(05)80021-X
  12. Roth, A., "Vacuum Technology," North-Holland, Amsterdam (1976).
  13. Kusakabe, S., Kuriyama, T. and Morooka, S., "Fluidization of Fine Particles at Reduced Pressure," Powder Technology, 58, 125-130(1989). https://doi.org/10.1016/0032-5910(89)80024-5
  14. Llop, M. F., Madrid, F., Arnaldos, J. and Casal J., "Fluidization at Vacuum Conditions. A Generalized Equation for the Prediction for the Prediction of Minimum Fluidization Velocity," Chemical Engineering Science, 51, 5149-5157(1996). https://doi.org/10.1016/S0009-2509(96)00351-X
  15. Zarekar, S., Buck, A., Jacob, M. and Tsotsas, E., "Reconsideration of the Hydrodynamic Behavior of Fluidized Beds Operated Under Reduced Pressure," Powder Technology, 287, 169-176 (2016). https://doi.org/10.1016/j.powtec.2015.09.027
  16. Kozanoglu, B. U., Welti Chanes, J., Garcia Cuautle, D., Sants Jean, J. P., "Hydrodynamics of Large Partilce Fluidization in Reduced Pressure Operations: An Experimental Study," Powder Technology, 125, 55-60(2002). https://doi.org/10.1016/S0032-5910(01)00524-1
  17. Wraith, A. E. and Harris, R., "Fluidisation of a Mineral Concentrate at Reduced Pressure," Minerals Engineering, 5, 993-1002 (1992). https://doi.org/10.1016/0892-6875(92)90126-T