DOI QR코드

DOI QR Code

Degradation characteristics and intermediate study of tetracycline in aqueous system by liquid ferrate(VI)

Liquid ferrate(VI)에 의한 다양한 수중 환경에서의 tetracycline 분해특성 및 중간생성물 연구

  • Park, Kyeong-Deok (Interdisciplinary Program of Marine Convergence Design, Pukyong National University) ;
  • Kang, Dong-Hwan (Institute of Environmental Research, Pukyong National University) ;
  • So, Yoon-Hwan (Institute of Environmental Research, Pukyong National University) ;
  • Cho, Joung-Hyung (Interdisciplinary Program of Marine Convergence Design, Pukyong National University) ;
  • Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
  • 박경덕 (부경대학교 마린융합디자인협동과정) ;
  • 강동환 (부경대학교 환경연구소) ;
  • 소윤환 (부경대학교 환경연구소) ;
  • 조정형 (부경대학교 마린융합디자인협동과정) ;
  • 김일규 (부경대학교 환경공학과)
  • Received : 2019.12.08
  • Accepted : 2020.02.10
  • Published : 2020.02.15

Abstract

Tetracycline is one of the most commonly used antibiotics in domestic and foreign livestock industries to suppress the growth of pathogens. Tetracycline has been reported as a non-biodegradable compound. Therefore it has been not completely removed in the sewage treatment process. In this study, tetracycline was degraded using liquid ferrate (VI). Based on these experiments, the optimal water condition (pH and water temperature) were selected, appropriate liquid ferrate (VI) dosage was calculated, and finally the degradation pathway was estimated with the intermediate products detected by LC/MS/MS. All degradation experiments were completed within 30 seconds and the optimal condition was obtained in basic condition (pH 10) at room temperature (20℃). And the appropriate molar ratio between tetracycline and liquid ferrate (VI) was 12.5:1. Finally, 12 intermediate products were detected with LC/MS/MS and the degradation pathways and the degradation pathways and proposed the degradation pathways.

Keywords

References

  1. Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G., and Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials, Chem. Eng. J., 283, 936-947. https://doi.org/10.1016/j.cej.2015.08.023
  2. Auerbach, E.A., Seyfried, E.E., and McMahon, K.D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants, Water Res., 41(5), 1143-1151. https://doi.org/10.1016/j.watres.2006.11.045
  3. Cao, M., Wang, P., Ao, Y., Wang, C., Hou, J., and Qian, J. (2016). Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst graphene oxidemagnetitecerium-doped titania, J. Colloid Interf. Sci., 467, 129-139. https://doi.org/10.1016/j.jcis.2016.01.005
  4. Chen, Y.Y., Ma, Y.L., Yang, J., Wang, L.Q., Lv, J.M., and Ren, C.J. (2017). Aqueous tetracycline degradation by $H_2O_2$ alone: Removal and transformation pathway, Chem. Eng. J., 307, 15-23. https://doi.org/10.1016/j.cej.2016.08.046
  5. Deng, J., Wu, H., Wang, S., Liu, Y., and Wang, H. (2019). Removal of sulfapyridine by ferrate(VI): efficiency, influencing factors and oxidation pathway, Environ. Technol., 40(12). 1585-1591. https://doi.org/10.1080/09593330.2018.1426642
  6. Dong, H., Qiang, Z., Lian, J., and Qu, J. (2017). Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle, J. Hazard. Mater., 336, 65-70. https://doi.org/10.1016/j.jhazmat.2017.04.056
  7. Drzewicz, P., Drobniewska, A., Sikorska, K., and Nalecz-Jawecki, G. (2018). Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate, Environ. Technol., 40(25), 3265-3275.
  8. Elmund, G.K., Morrison, S.M., Grant, D.W., and Nevins, M.P. (1971). Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste, Bull. Environ. Contam. Toxicol., 6(2), 129-132. https://doi.org/10.1007/BF01540093
  9. Feng, M., Baum, J.C., Nesnas, N., Lee, Y., Huang, C.H., and Sharma, V.K. (2019). Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(VI): Kinetics and mechanistic insight into $SO_2$ extrusion, Environ. Sci. Technol., 53(5), 2695-2704. https://doi.org/10.1021/acs.est.8b06535
  10. Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., and Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56, 949-956. https://doi.org/10.1016/j.chemosphere.2004.04.060
  11. Ha, H.J. (2005). A study on the photodegradation of 4-chlorophenol by photocatalysts with various transition metals, Pukyong National University, Busan, Korea, 1-2.
  12. Han, Q., Wang, H., Dong, W., Liu, T., Yin, Y., and Fan, H. (2015). Degradation of bisphenol-A by ferrate(VI) oxidation: Kinetics, products and toxicity assessment, Chem. Eng. J., 262, 34-40. https://doi.org/10.1016/j.cej.2014.09.071
  13. Heo, Y.S. (2006). Removal characteristics of toluene by the combined plasma photocatalyst system, Pukyong National University, Busan, Korea, 1-2.
  14. Hopkins, Z.R. and Blaney, L. (2014). A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone, Sci. Total Environ., 468-469, 337-344. https://doi.org/10.1016/j.scitotenv.2013.08.032
  15. Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., and Lloyd, C.R. (2001). Ferrate(VI) oxidation of aqueous phenol: Kinetics and mechanism, J. Phys. Chem. A, 105(14), 3536-3541. https://doi.org/10.1021/jp0039621
  16. Jing, X.R., Wang, Y.Y., Liu, W.J., Wang, Y.K., and Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J., 248, 168-174. https://doi.org/10.1016/j.cej.2014.03.006
  17. Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators 8(1), 1-13. https://doi.org/10.1016/j.ecolind.2007.06.002
  18. Khan, M.H., Bae, H., and Jung, J.Y. (2010). Tetracycline degradation by ozonation in the aqueous phase; Proposed degradation intermediates and pathway, J. Hazard. Mater., 181(1-3), 659-665. https://doi.org/10.1016/j.jhazmat.2010.05.063
  19. Kim, H.Y., Jeon, J., Hollender, J., Yu, S., and Kim, S.D. (2014). Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer, J. Hazard. Mater., 279, 428-435. https://doi.org/10.1016/j.jhazmat.2014.07.031
  20. Kim, K.H., Cho, E.S., Kim, K.S., Kim, J.E., Seol, K.H., Park, J.C., and Kim, Y.H. (2015). Investigation on changes in pig farm productivity after ban of antibiotics growth promoter in commercial mixed feed, Korean J. Agric. Sci., 42(3), 223-229. https://doi.org/10.7744/cnujas.2015.42.3.223
  21. Kumar, K., Gupta, S.C., Baidoo, S.K., Chander, Y., and Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure, J. Environ. Qual., 34, 2082-2085. https://doi.org/10.2134/jeq2005.0026
  22. Laksono, F.B. and Kim, I.K.. (2015). Application of in situ liquid ferrate(VI) for 2-bromophenol removal, J. Korean Soc. Water Wastewater, 29(6), 685-692. https://doi.org/10.11001/jksww.2015.29.6.685
  23. Laksono, F.B. and Kim, I.K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase, Desalination, Water Treat., 58, 391-398. https://doi.org/10.5004/dwt.2017.11428
  24. Liao, P., Zhan, z., Dai, J., Wu, X., Zhang, W., Wang, K., and Yuan, S. (2013). Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study, Chem. Eng. J., 228, 496-505. https://doi.org/10.1016/j.cej.2013.04.118
  25. Lim, S.K., Lee, J.E., Lee, H.S., Nam, H.M., Moon, D.C., Jang, G.C., Park, M.J., Jung, Y.G., Jung, S.C., and Wee, S.H. (2014). Trends in antimicrobial sales for livestock and fisheries in Korea during 2003-2012, Korean J. Vet. Res., 54(2), 81-86. https://doi.org/10.14405/kjvr.2014.54.2.81
  26. Liu, Y., He, X., Duan, X., Fu, Y., and Dionysiou, D.D. (2015). Photochemical degradation of oxytetracycline: Influence of pH and role of carbonate radical, Chem. Eng. J., 276, 113-121. https://doi.org/10.1016/j.cej.2015.04.048
  27. Ma, Y., Gao, N., and Li, C. (2012). Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29(5), 357-362. https://doi.org/10.1089/ees.2010.0475
  28. Macova, Z., Bouzek, K., Hives, J., Sharma V.K., Terryn, R.J. and Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate(VI), Electrochimica Acta, 54(10), 2673-2683. https://doi.org/10.1016/j.electacta.2008.11.034
  29. MAFRA (Ministry of Agriculture, Food, and Rural Affairs), APQA (Animal and Plant Quarantine Agency), and MFDS (Ministry of Food and Drug Safety). (2018). National monitoring of antibiotic usage and resistance in 2017: Livestock and food of animal origin, 11-1543061-000088-10, Ministry of Agriculture, Food, Rural Affairs, 9.
  30. Pan, M., Wong, C.K.C., and Chu, L.M. (2014). Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China, J. Agric. Food Chem., 62(46), 11062-11069. https://doi.org/10.1021/jf503850v
  31. Pan, M. and Chu, L.M. (2016). Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops, Ecotoxicol. Environ. Saf., 126, 228-237. https://doi.org/10.1016/j.ecoenv.2015.12.027
  32. Park, K.D. and Kim, I.K. (2016). Development of on-site process for refractory 2,4-dichlorophenol treatment, J. Korean Soc. Pow. Sys. Eng., 20(1), 42-49.
  33. Peings, V., Frayret, J., and Pigot, T. (2015). Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants, J. Environ. Manage., 157, 287-296. https://doi.org/10.1016/j.jenvman.2015.04.004
  34. Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R., and Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data, J. Antimicrob. Chemother., 53, 28-52. https://doi.org/10.1093/jac/dkg483
  35. Prado, N., Ochoa, J., and Amrane, A. (2009a). Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor, Bioresour. Technol., 100(15), 3769-3774. https://doi.org/10.1016/j.biortech.2008.11.039
  36. Prado, N., Ochoa, J., and Amrane, A. (2009b). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system, Process Biochem., 44(11), 1302-1306. https://doi.org/10.1016/j.procbio.2009.08.006
  37. Safari, G.H., Nasseri, S., Mahvi, A.H., Yaghmaeian, K., Nabizadeh R., and Alimohammadi, M. (2015). Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process, J. Environ. Health Sci., 13(76).
  38. Sharma, V.K. (2002). Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  39. Sharma, V.K. (2015). Apparatus and method for producing liquid ferrate, US 8,961,921 B2.
  40. Son, H.J., Jung. J.M., Hwang, Y.D., Roh, J.S., and Yu, P.J. (2008). Effects of activated carbon types and service life on adsorption of tetracycline antibiotic compounds in GAC process, J. Korean Soc. Environ. Eng., 30(9), 925-932.
  41. Son, H.J., Hwang, Y.D., and Yoo, P.J. (2009). Removal characteristics of tetracycline, oxytetracycline, trimethoprime and caffeine in biological activated carbon process, J. Korean Soc. Environ. Eng., 31(3), 186-192.
  42. Son, H.J., Yeom, H.S., Ryu, D.C., Jang, S.H., and Son, H.S. (2014a). Characteristics of adsorption and biodegradation of tetracycline antibiotics by granular activated carbon and biofiltration process, J. Environ. Sci. Int., 23(3), 379-386. https://doi.org/10.5322/JESI.2014.23.3.379
  43. Son, H.J., Yoom, H.S., Jang, S.H., Kim, H.S., Hong, S.H., Park, W.S., and Song, Y.C. (2014b). Removal of tetracycline antibiotics using UV and UV/$H_2O_2$ systems in water, J. Environ. Sci. Int., 23(7), 1359-1366. https://doi.org/10.5322/JESI.2014.23.7.1359
  44. Tasho, R.P. and Cho, J.Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review, Sci. Total Environ., 563-564, 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140
  45. Wagner, W.F., Gurip, J.R., and Hart, E.N. (1952). Factors affecting stability of aqueous potassium ferrate(VI) solutions, Anal. Chem., 24(9), 1497-1498. https://doi.org/10.1021/ac60069a037
  46. Wang, X., Wang, Y., and Li, D. (2013). Degradation of tetracycline in water by ultrasonic irradiation, Water Sci. Technol., 67(4), 715-721. https://doi.org/10.2166/wst.2012.579
  47. Wang, Y., Liu, H., Liu, G., Xie, Y., and Gao, S. (2015). Oxidation of diclofenac by potassium ferrate(VI): Reaction kinetics and toxicity evaluation, Sci. Total Environ., 506-507, 252-258. https://doi.org/10.1016/j.scitotenv.2014.10.114
  48. Wollenberger, L., Halling-Sorensen, B., and Kusk, K.O. (2000). Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, Chemosphere, 40(7), 723-730. https://doi.org/10.1016/S0045-6535(99)00443-9
  49. Wu, K., Wang, H., Zhou, C., Amina, Y., and Si, Y. (2018). Efficient oxidative removal of sulfonamide antibiotics from the wastewater by potassium ferrate, J. Adv. Oxid. Technol., 21(1). https://doi.org/10.26802/jaots.2017.0038
  50. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45(6), 2261-2269. https://doi.org/10.1016/j.watres.2011.01.022
  51. Yang, B., Ying, G.G., Zhao, J.L., Liu, S., Zhou, L.J., and Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents, Water Res., 46(7), 2194-2204. https://doi.org/10.1016/j.watres.2012.01.047
  52. Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L., Peng, F.Q., and Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62(1), 211-219. https://doi.org/10.1016/j.watres.2014.05.056
  53. Yang, Y., Zeng, Z., Zhang, C., Huang, D., Zeng, G., Xiao, R., Lai, C., Zhou, C., Guo, H., Xue, W., Cheng, M., Wang, W., and Wang, J. (2018). Construction of iodine vacancy-rich BiOIAg@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation Transformation pathways and mechanism insight, Chem. Eng. J., 349, 808-821. https://doi.org/10.1016/j.cej.2018.05.093
  54. Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., and Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/$H_2O_2$ process, J. Hazard. Mater., 185, 1256-1263. https://doi.org/10.1016/j.jhazmat.2010.10.040
  55. Zhang, P., Zhang, G., Dong, J., Fan, M., and Zeng, G. (2012). Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition, Sep. Purif. Technol., 84(9), 46-51. https://doi.org/10.1016/j.seppur.2011.06.022
  56. Zhou, Z. and Jiang, J. (2015a). Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products, J. Pharmaceut. Biomed., 106(15), 37-45. https://doi.org/10.1016/j.jpba.2014.06.032
  57. Zhou, Z. and Jiang, J.Q. (2015b). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI), Chemosphere, 119, S95-S100. https://doi.org/10.1016/j.chemosphere.2014.04.006
  58. Zhu, X.D., Wang, Y.J., Sun, R.J., and Zhou, D.M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized $TiO_2$, Chemosphere, 92(8), 925-932. https://doi.org/10.1016/j.chemosphere.2013.02.066