References
- Amit, B.E. and Mika, K.S. (2011). Fluoride removal from water by adsorption-A review, J. Chem. Eng. Chem. Res., 171, 817-823.
- Brunson, L.R. and Sabatini, D.A. (2009). Sustainable use and implementation of bone char as a technology for arsenic and fluoride removal, J. Water Sanit. Hyg. Dev., 307, 1-4.
- Colombani, N.D., Di, G.S., Kebede, M. and Mas, T. (2018). Assessment of the anthropogenic fluoride export in Addis Ababa urban environment (Ethiopia), J. Geochem. Explor., 190, 390-399. https://doi.org/10.1016/j.gexplo.2018.04.008
- Flores-Cano, J.V., Leyva-Ramos, R., Carrasco-Marin, F., Arag, A., Salazar-Rabago, J.J., and Leyva-Ramos, S. (2016). Adsorption mechanism of chromium(III) from water solution on bone char: effect of operating conditions, Adsorption, 22, 297-308. https://doi.org/10.1007/s10450-016-9771-3
- Imran, H. and Mithas, A.D. (2013). Perspectives in water pollution. Open sci., Intech, 71-75.
- Ismail, Z.Z. and AbdelKareem, H.N. (2015). Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride bearing waste in concrete, Waste Manag., 45, 66-75. https://doi.org/10.1016/j.wasman.2015.06.039
- Jeremy, A.H., Jason, M.T. and Peter, M.M. (2018). Fluorides and other preventive strategies for tooth decay, Dent. Clin. North. Am., 62, 207-234. https://doi.org/10.1016/j.cden.2017.11.003
- Kaseva, M.E. (2006). Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania, J. Water Health, 4, 140-141. https://doi.org/10.2166/wh.2006.0011
- Medellin-Castillo, N.A., Leyva-Ramos, R., Padilla-Ortega, E., Perez, R.O., Flores-Cano, J.V. and Berber-Mendoza, M.S. (2014). Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions, J. Ind. Eng. Chem., 20, 4014-4021. https://doi.org/10.1016/j.jiec.2013.12.105
- Metcalf, E. and George, T. (2003). Wastewater Engineering: Treatment amd Reuse. 4th Ed., Dong Hwa Tec., McGraw-hill edu., 695-707.
- Nelson, H.A., Camargo, S.A., Lima, D. and Enori, G. (2012). Synthesis and characterization of hydroxyapatite/TiO2n nanocomposites for bone tissue regeneration, J. Biomed. Eng., 2, 41-47. https://doi.org/10.5923/j.ajbe.20120202.08
- Nova, R.M. and Henny, N.S. (2014). Chicken bone charcoal for defluoridation of groundwater in Indonesia, J. Poult. Sci., 13, 591-596. https://doi.org/10.3923/ijps.2014.591.596
- Person, A., Bocherens, H., Mariotti, A. and Renard, M. (1996). Diagenetic evolution and experimental heating of bone phosphate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 126(1-2), 135-149. https://doi.org/10.1016/S0031-0182(97)88906-7
- Rojas-Mayorga, C.K., Bonilla-Petriciolet, A., Aguayo-Villarreal, I.A., Hernandez-Montoya, V., Moreno-Virgen, M.R., Tovar-Gomez, R. and Montes-Moran, M.A. (2013). Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water, J. Anal. Appl. Pyrolysis, 104, 10-18. https://doi.org/10.1016/j.jaap.2013.09.018
- Rojas-Mayorga, C.K., Bonilla-Petriciolet, A., Silvestre-Albero, J., Aguayo-Villarreal, I.A. and Mendoza-Castillo, D.I. (2015). Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation, Appl. Surf. Sci., 355, 748-760. https://doi.org/10.1016/j.apsusc.2015.07.163
- Sangeeta, P., Jie, H., Wei, Q. and Wei, G. (2015). Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application, J. Environ. Chem. Eng., 3, 2368-2377. https://doi.org/10.1016/j.jece.2015.07.031
- Shahid, M.K., Kim, J.Y. and Choi, Y.G. (2019). Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water, Groundwa. Sustain. Dev., 8, 324-331. https://doi.org/10.1016/j.gsd.2018.12.003
- Uysal, I., Severcan, F., Tezcaner, A. and Evis, Z. (2014). Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite, Prog. Nat. Sci., 24, 340-349. https://doi.org/10.1016/j.pnsc.2014.06.004
- Wang, H., Lee, J.K., Moursi, A. and Lannutti, J.J. (2003). Ca/P ratio effects on the degradation of hydroxyapatite in vitro, J. Biomed. Mater. Res. A., 67, 599-608.
- Wang, L., Xie, Y., Yang, J., Zhu, X., Hu, Q., Li, X. and Liu, Z. (2017). Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste, J. RSC Adv., 7, 54291-54305. https://doi.org/10.1039/C7RA10713G
- Zainab, Z., Ismail, H. and Kareem, A. (2015). Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete, Int. J. Environ. Waste Manag., 45, 66-75. https://doi.org/10.1016/j.wasman.2015.06.039
- Zuniga-Muro, N.M., Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, H.E. and Tapia-Picazo, J.C. (2017). Fluoride adsorption properties of cerium-containing bone char, J. Fluor. Chem., 197, 63-73. https://doi.org/10.1016/j.jfluchem.2017.03.004