Acknowledgement
The author would like to thank the Referees for all helpful comments and suggestions that have improved the quality of our initial manuscript.
References
- W. Batat and A. Zaeim, On the symmetries of the Heisenberg group, https://arxiv.org/abs/1710.04539, (2017).
- G. Calvaruso and A. Zaeim, Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds, Rev. Mat. Complut. 28 (2015), no. 3, 599-622. https://doi.org/10.1007/s13163-015-0168-8
- G. Calvaruso and A. Zaeim, Symmetries of Lorentzian three-manifolds with recurrent curvature, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 063, 12 pp. https://doi.org/10.3842/SIGMA.2016.063
- G. Calvaruso and A. Zaeim, On the symmetries of the Lorentzian oscillator group, Collect. Math. 68 (2017), no. 1, 51-67. https://doi.org/10.1007/s13348-016-0173-3
- E. Calvino-Louzao, J. Seoane-Bascoy, M. E. Vazquez-Abal, and R. Vazquez-Lorenzo, Invariant Ricci collineations on three-dimensional Lie groups, J. Geom. Phys. 96 (2015), 59-71. https://doi.org/10.1016/j.geomphys.2015.06.005
- U. Camci, I. Hussain, and Y. Kucukakca, Curvature and Weyl collineations of Bianchi type V spacetimes, J. Geom. Phys. 59 (2009), no. 11, 1476-1484. https://doi.org/10.1016/j.geomphys.2009.07.008
- U. Camci and M. Sharif, Matter collineations of spacetime homogeneous Godel-type metrics, Classical Quantum Gravity 20 (2003), no. 11, 2169-2179. https://doi.org/10.1088/0264-9381/20/11/316
- J. Carot, J. da Costa, and E. G. L. R. Vaz, Matter collineations: the inverse "symmetry inheritance" problem, J. Math. Phys. 35 (1994), no. 9, 4832-4838. https://doi.org/10.1063/1.530816
- G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. https://doi.org/10.1142/1729
- O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, 805, Springer-Verlag, Berlin, 1980.
- A. Mostefaoui, L. Belarbi, and W. Batat, Ricci solitons of five-dimensional solvable Lie group, PanAmer. Math. J. 29 (2019), no. 1, 1-16.