DOI QR코드

DOI QR Code

ON THE SYMMETRIES OF THE Sol3 LIE GROUP

  • Belarbi, Lakehal (Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem (U.M.A.B.))
  • Received : 2019.03.07
  • Accepted : 2019.07.25
  • Published : 2020.03.01

Abstract

In this work we consider the Sol3 Lie group, equipped with the left-invariant metric, Lorentzian or Riemannian. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations.

Keywords

Acknowledgement

The author would like to thank the Referees for all helpful comments and suggestions that have improved the quality of our initial manuscript.

References

  1. W. Batat and A. Zaeim, On the symmetries of the Heisenberg group, https://arxiv.org/abs/1710.04539, (2017).
  2. G. Calvaruso and A. Zaeim, Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds, Rev. Mat. Complut. 28 (2015), no. 3, 599-622. https://doi.org/10.1007/s13163-015-0168-8
  3. G. Calvaruso and A. Zaeim, Symmetries of Lorentzian three-manifolds with recurrent curvature, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 063, 12 pp. https://doi.org/10.3842/SIGMA.2016.063
  4. G. Calvaruso and A. Zaeim, On the symmetries of the Lorentzian oscillator group, Collect. Math. 68 (2017), no. 1, 51-67. https://doi.org/10.1007/s13348-016-0173-3
  5. E. Calvino-Louzao, J. Seoane-Bascoy, M. E. Vazquez-Abal, and R. Vazquez-Lorenzo, Invariant Ricci collineations on three-dimensional Lie groups, J. Geom. Phys. 96 (2015), 59-71. https://doi.org/10.1016/j.geomphys.2015.06.005
  6. U. Camci, I. Hussain, and Y. Kucukakca, Curvature and Weyl collineations of Bianchi type V spacetimes, J. Geom. Phys. 59 (2009), no. 11, 1476-1484. https://doi.org/10.1016/j.geomphys.2009.07.008
  7. U. Camci and M. Sharif, Matter collineations of spacetime homogeneous Godel-type metrics, Classical Quantum Gravity 20 (2003), no. 11, 2169-2179. https://doi.org/10.1088/0264-9381/20/11/316
  8. J. Carot, J. da Costa, and E. G. L. R. Vaz, Matter collineations: the inverse "symmetry inheritance" problem, J. Math. Phys. 35 (1994), no. 9, 4832-4838. https://doi.org/10.1063/1.530816
  9. G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. https://doi.org/10.1142/1729
  10. O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, 805, Springer-Verlag, Berlin, 1980.
  11. A. Mostefaoui, L. Belarbi, and W. Batat, Ricci solitons of five-dimensional solvable Lie group, PanAmer. Math. J. 29 (2019), no. 1, 1-16.