DOI QR코드

DOI QR Code

NONLIFT WEIGHT TWO PARAMODULAR EIGENFORM CONSTRUCTIONS

  • Poor, Cris (Department of Mathematics Fordham University) ;
  • Shurman, Jerry (Department of Mathematics Reed College) ;
  • Yuen, David S. (Department of Mathematics University of Hawaii)
  • 투고 : 2019.03.01
  • 심사 : 2019.07.09
  • 발행 : 2020.03.01

초록

We complete the construction of the nonlift weight two cusp paramodular Hecke eigenforms for prime levels N < 600, which arise in conformance with the paramodular conjecture of Brumer and Kramer.

키워드

참고문헌

  1. J. Breeding, II, C. Poor, and D. S. Yuen, Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53 (2016), no. 3, 645-689. https://doi.org/10.4134/JKMS.j150219
  2. A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463-2516. https://doi.org/10.1090/S0002-9947-2013-05909-0
  3. A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, arXiv: 1004.4699, 2018.
  4. A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight, and D. S. Yuen, On the paramod-ularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145-1195. https://doi.org/10.2140/ant.2019.13.1145
  5. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
  6. V. A. Gritsenko, 24 faces of the Borcherds modular form $\phi_{12}$, arXiv:1203.6503, 2012.
  7. V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117
  8. V. A. Gritsenko, C. Poor, and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164-195. https://doi.org/10.1016/j.jnt.2014.07.028
  9. V. A. Gritsenko, C. Poor, and D. S. Yuen, Antisymmetric paramodular forms of weights 2 and 3, to appear in Int. Math. Res. Not. IMRN.
  10. V. A. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, https://math.univlille1.fr/d7/sites/default/files/THET
  11. T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69 (2017), no. 2, 597-671. https://doi.org/10.2969/jmsj/06920597
  12. T. Ibukiyama, C. Poor, and D. S. Yuen, Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 111-128. https://doi.org/10.1007/s12188-013-0078-y
  13. C. Poor, J. Shurman, and D. S. Yuen, Siegel paramodular forms of weight 2 and square-free level, Int. J. Number Theory 13 (2017), no. 10, 2627-2652. https://doi.org/10.1142/S1793042117501469
  14. C. Poor, J. Shurman, and D. S. Yuen, Finding all Borcherds product paramodular cusp forms of a given weight and level, arXiv:1803.11092, 2018.
  15. C. Poor, J. Shurman, and D. S. Yuen, Nonlift weight two paramodular eigenform constructions, 2018. http://www.siegelmodularforms.org/pages/degree2/paramodular-wt2-prime-sequel/
  16. C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
  17. C. Poor and D. S. Yuen, Paramodular Forms of Weight 2, Prime Levels to 600, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
  18. B. Roberts and R. Schmidt, On modular forms for the paramodular groups, in Automorphic forms and zeta functions, 334-364, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812774415_0015
  19. B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, 1918, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-73324-9
  20. G. Shimura, On the Fourier coeffcients of modular forms of several variables, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II 1975 (1975), no. 17, 261-268.
  21. N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. https://doi.org/10.1515/crll.1989.393.168