Acknowledgement
Supported by : Department of Atomic Energy, Government of India
We are very grateful to Professor Michael Hirschhorn for careful reading of a draft of the manuscript. We thank the referee for the comments. The first author acknowledges the financial support of SERB, Department of Science and Technology, Government of India. The third author acknowledges the financial support of Department of Atomic Energy, Government of India for supporting a part of this work under NBHM Fellowship.
References
-
Z. Ahmed and N. D. Baruah, New congruences for
$\ell$ -regular partitions for$\ell$ ${\in}$ {5; 6; 7; 49}, Ramanujan J. 40 (2016), no. 3, 649-668. https://doi.org/10.1007/s11139-015-9752-2 - B. C. Berndt, Ramanujan's Notebooks. Part III, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2
- C. Bessenrodt, On pairs of partitions with steadily decreasing parts, J. Combin. Theory Ser. A 99 (2002), no. 1, 162-174. https://doi.org/10.1006/jcta.2002.3267
- K. Bringmann and J. Lovejoy, Rank and congruences for overpartition pairs, Int. J. Number Theory 4 (2008), no. 2, 303-322. https://doi.org/10.1142/S1793042108001353
- Z. Cao, On Somos' dissection identities, J. Math. Anal. Appl. 365 (2010), no. 2, 659-667. https://doi.org/10.1016/j.jmaa.2009.11.038
- W. Y. C. Chen and B. L. S. Lin, Arithmetic properties of overpartition pairs, Acta Arith. 151 (2012), no. 3, 263-277. https://doi.org/10.4064/aa151-3-3
- S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1623-1635. https://doi.org/10.1090/S0002-9947-03-03328-2
-
S.-P. Cui and N. S. S. Gu, Arithmetic properties of
$\ell$ -regular partitions, Adv. in Appl. Math. 51 (2013), no. 4, 507-523. https://doi.org/10.1016/j.aam.2013.06.002 - M. D. Hirschhorn, The Power of q, Developments in Mathematics, 49, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-57762-3
- M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput. 53 (2005), 65-73.
- B. Kim, A short note on the overpartition function, Discrete Math. 309 (2009), no. 8, 2528-2532. https://doi.org/10.1016/j.disc.2008.05.007
- B. Kim, Overpartition pairs modulo powers of 2, Discrete Math. 311 (2011), no. 10-11, 835-840. https://doi.org/10.1016/j.disc.2011.02.002
- B. L. S. Lin, Arithmetic properties of overpartition pairs into odd parts, Electron. J. Combin. 19 (2012), no. 2, #P17.
- K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286 (2004), no. 3, 263-267. https://doi.org/10.1016/j.disc.2004.03.014
- E. X. W. Xia, More infinite families of congruences modulo 5 for broken 2-diamond partitions, J. Number Theory 170 (2017), 250-262. https://doi.org/10.1016/j.jnt.2016.04.023
- O. X. M. Yao, Congruences modulo 64 and 1024 for overpartitions, Ramanujan J. 46 (2018), no. 1, 1-18. https://doi.org/10.1007/s11139-016-9841-x