DOI QR코드

DOI QR Code

CONGRUENCES MODULO POWERS OF 2 FOR OVERPARTITION PAIRS INTO ODD PARTS

  • Ahmed, Zakir (Department of Mathematics Barnagar College) ;
  • Barman, Rupam (Department of Mathematics Indian Institute of Technology Guwahati) ;
  • Ray, Chiranjit (Department of Mathematics Indian Institute of Technology Guwahati)
  • Received : 2019.02.15
  • Accepted : 2019.04.24
  • Published : 2020.03.01

Abstract

We find congruences modulo 32, 64 and 128 for the partition function ${\overline{PP}_o}(n)$, the number of overpartition pairs of n into odd parts, with the aid of Ramamnujan's theta function identities and some known identities of tk(n), for k = 6, 7, where tk(n) denotes the number of representations of n as a sum of k triangular numbers. We also find two Ramanujan-like congruences for ${\overline{PP}_o}(n)$ modulo 128.

Keywords

Acknowledgement

Supported by : Department of Atomic Energy, Government of India

We are very grateful to Professor Michael Hirschhorn for careful reading of a draft of the manuscript. We thank the referee for the comments. The first author acknowledges the financial support of SERB, Department of Science and Technology, Government of India. The third author acknowledges the financial support of Department of Atomic Energy, Government of India for supporting a part of this work under NBHM Fellowship.

References

  1. Z. Ahmed and N. D. Baruah, New congruences for $\ell$-regular partitions for $\ell$ ${\in}$ {5; 6; 7; 49}, Ramanujan J. 40 (2016), no. 3, 649-668. https://doi.org/10.1007/s11139-015-9752-2
  2. B. C. Berndt, Ramanujan's Notebooks. Part III, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2
  3. C. Bessenrodt, On pairs of partitions with steadily decreasing parts, J. Combin. Theory Ser. A 99 (2002), no. 1, 162-174. https://doi.org/10.1006/jcta.2002.3267
  4. K. Bringmann and J. Lovejoy, Rank and congruences for overpartition pairs, Int. J. Number Theory 4 (2008), no. 2, 303-322. https://doi.org/10.1142/S1793042108001353
  5. Z. Cao, On Somos' dissection identities, J. Math. Anal. Appl. 365 (2010), no. 2, 659-667. https://doi.org/10.1016/j.jmaa.2009.11.038
  6. W. Y. C. Chen and B. L. S. Lin, Arithmetic properties of overpartition pairs, Acta Arith. 151 (2012), no. 3, 263-277. https://doi.org/10.4064/aa151-3-3
  7. S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1623-1635. https://doi.org/10.1090/S0002-9947-03-03328-2
  8. S.-P. Cui and N. S. S. Gu, Arithmetic properties of $\ell$-regular partitions, Adv. in Appl. Math. 51 (2013), no. 4, 507-523. https://doi.org/10.1016/j.aam.2013.06.002
  9. M. D. Hirschhorn, The Power of q, Developments in Mathematics, 49, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-57762-3
  10. M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput. 53 (2005), 65-73.
  11. B. Kim, A short note on the overpartition function, Discrete Math. 309 (2009), no. 8, 2528-2532. https://doi.org/10.1016/j.disc.2008.05.007
  12. B. Kim, Overpartition pairs modulo powers of 2, Discrete Math. 311 (2011), no. 10-11, 835-840. https://doi.org/10.1016/j.disc.2011.02.002
  13. B. L. S. Lin, Arithmetic properties of overpartition pairs into odd parts, Electron. J. Combin. 19 (2012), no. 2, #P17.
  14. K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286 (2004), no. 3, 263-267. https://doi.org/10.1016/j.disc.2004.03.014
  15. E. X. W. Xia, More infinite families of congruences modulo 5 for broken 2-diamond partitions, J. Number Theory 170 (2017), 250-262. https://doi.org/10.1016/j.jnt.2016.04.023
  16. O. X. M. Yao, Congruences modulo 64 and 1024 for overpartitions, Ramanujan J. 46 (2018), no. 1, 1-18. https://doi.org/10.1007/s11139-016-9841-x