DOI QR코드

DOI QR Code

CONDITIONAL EXPECTATION OF PETTIS INTEGRABLE UNBOUNDED RANDOM SETS

  • Received : 2019.01.24
  • Accepted : 2019.10.16
  • Published : 2020.03.01

Abstract

In this paper we established new results of existence of conditional expectation for closed convex and unbounded Pettis integrable random sets without assuming the Radon Nikodym property of the Banach space. As application, new versions of multivalued Lévy's martingale convergence theorem are proved by using the Slice and the linear topologies.

Keywords

Acknowledgement

The author wishes to thank the reviewer for his helpful remarks, valuable suggestions and his collaboration to evaluate this work.

References

  1. F. Akhiat, C. Castaing, and F. Ezzaki, Some various convergence results for multival- ued martingales, in Advances in Mathematical Economics 13 (2010), 1-33, Adv. Math. Econ., 13, Springer, Tokyo, 2010. https://doi.org/10.1007/978-4-431-99490-9_1
  2. F. Akhiat, M. El Harami, and F. Ezzaki, Pettis conditional expectation of closed convex random sets in a Banach space without RNP, J. Korean Math. Soc. 55 (2018), no. 4, 833-848. https://doi.org/10.4134/JKMS.j170490
  3. A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sci. Math. 45 (1997), no. 2, 139-150.
  4. I. Assani and H.-A. Klei, Parties decomposables compactes de $L_{E}^{I}$, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 16, 533-536.
  5. G. Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15-36. https://doi.org/10.1080/01630568908816288
  6. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977.
  7. N. D. Chakraborty and T. Choudhury, Convergence theorems for Pettis integrable functions and regular methods of summability, J. Math. Anal. Appl. 359 (2009), no. 1, 95-105. https://doi.org/10.1016/j.jmaa.2009.05.014
  8. S. D. Chatterji, Martingales of Banach-valued random variables, Bull. Amer. Math. Soc. 66 (1960), 395-398. https://doi.org/10.1090/S0002-9904-1960-10471-5
  9. A. Choukairi, Sur la convergence d'esperances conditionnelles de multiapplications, in Seminaire d'analyse convexe, Vol. 17, Exp. 10, 19 pp, Univ. Sci. Tech. Languedoc, Montpellier, 1987.
  10. W. Dong and Z. Wang, On representation and regularity of continuous parame-ter multivalued martingales, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1799-1810. https://doi.org/10.1090/S0002-9939-98-04726-1
  11. R. M. Dudley, Real analysis and probability, revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002. https://doi.org/10.1017/CBO9780511755347
  12. K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), no. 4, 329-360. https://doi.org/10.1023/A:1026547222209
  13. M. El Harami and F. Ezzaki, General Pettis conditional expectation and convergence theorems, Int. J. Math. Stat. 11 (2012), no. 1, 91-111.
  14. F. Ezzaki, Convergence des esperances conditionnelles d'ensembles aleatoires et LFGN, These de Doctorat d'Etat, Universite Mohammed V, Faculte des Sciences, Rabat, 1996.
  15. A. Faik, Contribution a l'analyse des multifonctions et a l'etude de quelques problemes d'evolution, These de doctorat, Montppelier II, 1995.
  16. C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), no. 1, 39-58. https://doi.org/10.2989/16073600609486148
  17. C. Hess, Quelques resultats sur la mesurabilite des multifonctions a valeurs dans un espace metrique separable, in Seminaire d'analyse convexe, Vol. 16, Exp. 1, 43 pp, Univ. Sci. Tech. Languedoc, Montpellier, 1986.
  18. C. Hess, Measurability and integrability of the weak upper limit of a sequence of multi-functions, J. Math. Anal. Appl. 153 (1990), no. 1, 226-249. https://doi.org/10.1016/ 0022-247X(90)90275-K
  19. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multi-valued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182. https://doi.org/10.1016/0047-259X(77)90037-9
  20. G. Krupa, Convergence of unbounded multivalued supermartingales in the Mosco and slice topologies, J. Convex Anal. 5 (1998), no. 1, 187-198.
  21. K. Musial, The weak Radon-Nikodym property in Banach spaces, in General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976), Part B, 308-310, Soc. Czechoslovak Mathematicians and Physicists, Prague, 1977.
  22. K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), no. 2, 151-174. https://doi.org/10.4064/sm-64-2-151-174
  23. J. Neveu, Martingales a temps discret, Masson et Cie, editeurs, Paris, 1972.
  24. N. S. Papageorgiou, Convergence theorems for set-valued conditional expectations, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 97-104.
  25. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp. https://doi.org/10.1090/memo/0307
  26. Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807-827. https://doi.org/10.2307/2154584
  27. X. Xue, L. Cheng, G. Li, and X. Yao, Set valued measures and integral representation, Comment. Math. Univ. Carolin. 37 (1996), no. 2, 269-284.
  28. H. Ziat, Convergence des suites adaptees multivoques application a la loi forte des grands nombres multivoque, These de doctorat Montpellier II, 1993.