참고문헌
- B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z. 217 (1994), no. 2, 179-197. https://doi.org/10.1007/BF02571941
- J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), 42-63, Lecture Notes in Math., 838, Springer, Berlin, 1981.
- H.-D. Cao, On Harnack's inequalities for the Kahler-Ricci flow, Invent. Math. 109 (1992), no. 2, 247-263. https://doi.org/10.1007/BF01232027
- X. Cao, Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal. 255 (2008), no. 4, 1024-1038. https://doi.org/10.1016/j.jfa.2008.05.009
- X. Cao, H. Guo, and H. Tran, Harnack estimates for conjugate heat kernel on evolving manifolds, Math. Z. 281 (2015), no. 1-2, 201-214. https://doi.org/10.1007/s00209-015-1479-7
- X. Cao and R. S. Hamilton, Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal. 19 (2009), no. 4, 989-1000. https://doi.org/10.1007/s00039-009-0024-4
- X. Cao and Z. Zhang, Differential Harnack estimates for parabolic equations, in Complex and differential geometry, 87-98, Springer Proc. Math., 8, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-20300-8_5
- G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
- H.-B. Cheng, A new Li-Yau-Hamilton estimate for the Ricci flow, Comm. Anal. Geom. 14 (2006), no. 3, 551-564. http://projecteuclid.org/euclid.cag/1175790091 https://doi.org/10.4310/CAG.2006.v14.n3.a5
- B. Chow, The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), no. 2, 325-334. http://projecteuclid.org/euclid.jdg/1214446319
- B. Chow, On Harnack's inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math. 44 (1991), no. 4, 469-483. https://doi.org/10.1002/cpa.3160440405
- B. Chow, The Yamabe flow on locally conformally at manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 45 (1992), no. 8, 1003-1014. https://doi.org/10.1002/cpa.3160450805
- B. Chow and R. S. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math. 129 (1997), no. 2, 213-238. https://doi.org/10.1007/s002220050162
- B. Chow and D. Knopf, New Li-Yau-Hamilton inequalities for the Ricci flow via the space-time approach, J. Differential Geom. 60 (2002), no. 1, 1-54. http://projecteuclid.org/euclid.jdg/1090351083
- A. E. Fischer, An introduction to conformal Ricci flow, Classical Quantum Gravity 21 (2004), no. 3, S171-S218. https://doi.org/10.1088/0264-9381/21/3/011
- C. M. Guenther, The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal. 12 (2002), no. 3, 425-436. https://doi.org/10.1007/BF02922048
- H. Guo and M. Ishida, Harnack estimates for nonlinear backward heat equations in geometric flows, J. Funct. Anal. 267 (2014), no. 8, 2638-2662. https://doi.org/10.1016/j.jfa.2014.08.006
- H. Guo and M. Ishida, Harnack estimates for nonlinear heat equations with potentials in geometric flows, Manuscripta Math. 148 (2015), no. 3-4, 471-484. https://doi.org/10.1007/s00229-015-0757-3
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
- R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225-243. http://projecteuclid.org/euclid.jdg/1214453430 https://doi.org/10.4310/jdg/1214453430
- R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126. https://doi.org/10.4310/CAG.1993.v1.n1.a6
- R. S. Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995), no. 1, 215-226. http://projecteuclid.org/euclid.jdg/1214456010 https://doi.org/10.4310/jdg/1214456010
- S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal. 255 (2008), no. 4, 1008-1023. https://doi.org/10.1016/j.jfa.2008.05.014
- P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://projecteuclid.org/euclid.acta/1485890415 https://doi.org/10.1007/BF02399203
- L. Ni, A note on Perelman's LYH-type inequality, Comm. Anal. Geom. 14 (2006), no. 5, 883-905. http://projecteuclid.org/euclid.cag/1175790872 https://doi.org/10.4310/CAG.2006.v14.n5.a3
- L. Ni, A matrix Li-Yau-Hamilton estimate for Kahler-Ricci flow, J. Differential Geom. 75 (2007), no. 2, 303-358.
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, 2002. arXiv math.DG/0211159v1.
- N. Sesum, G. Tian, and X.-D. Wang, Notes on Perelman's paper on the entropy formula for the Ricci flow and its geometric applications, preprint, 2003.
- J.-Y. Wu, Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds, J. Math. Anal. Appl. 369 (2010), no. 1, 400-407. https://doi.org/10.1016/j.jmaa.2010.03.055
- J.-Y. Wu, Differential Harnack inequalities for nonlinear heat equations with potentials under the Ricci flow, Pacific J. Math. 257 (2012), no. 1, 199-218. https://doi.org/10.2140/pjm.2012.257.199
- J.-Y. Wu and Y. Zheng, Interpolating between constrained Li-Yau and Chow-Hamilton Harnack inequalities on a surface, Arch. Math. (Basel) 94 (2010), no. 6, 591-600. https://doi.org/10.1007/s00013-010-0135-z
- Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4095-4102. https://doi.org/10.1090/S0002-9939-08-09398-2
- S.-T. Yau, On the Harnack inequalities of partial differential equations, Comm. Anal. Geom. 2 (1994), no. 3, 431-450. https://doi.org/10.4310/CAG.1994.v2.n3.a3
- S.-T. Yau, Harnack inequality for non-self-adjoint evolution equations, Math. Res. Lett. 2 (1995), no. 4, 387-399. https://doi.org/10.4310/MRL.1995.v2.n4.a2
- R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994), no. 1, 35-50. http://projecteuclid.org/euclid.jdg/1214454674
- Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Not. 2006 (2006), Art. ID 92314, 39 pp. https://doi.org/10.1155/IMRN/2006/92314