DOI QR코드

DOI QR Code

Forward and Back Diffusion from Low Permeability Zone: A Review of Analytical Solutions with Different Boundary Conditions

저투수성 매체 내 오염물질의 정확산과 역확산: 경계조건에 따른 용질이동 해석해의 소개

  • Kim, Changmin (Division of Earth Environmental System Sciences, Pukyong National University) ;
  • Yang, Minjune (Department of Earth and Environmental Sciences, Pukyong National University)
  • 김창민 (부경대학교 지구환경시스템과학부) ;
  • 양민준 (부경대학교 지구환경과학과)
  • Received : 2020.01.03
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

It is a global trend to consider contaminated low-permeability zones as one of the primary management targets for the remediation of DNAPL contaminated sites. In addition, studies on the persistence caused by back diffusion of DNAPLs from low-permeability zones have been actively conducted worldwide. On the other hand, the studies for domestic groundwater contamination with the low-permeability zones are insufficient. Therefore, this study introduces the forward and back diffusions of DNAPL through low-permeability zones and suggests the importance of them by reviewing representative previous studies, especially on back diffusion and plume persistence. We proposed six diffusion scenarios and analytical solutions based on various boundary conditions of low-permeability zones. FI (forward diffusion into infinite domain) and BI (back diffusion form infinite domain) scenarios illustrate forward and back diffusion in which the depths of a low-permeability layer are assumed to be infinite. FFN (forward diffusion into finite domain with no flux boundary) and BFN (back diffusion from finite domain with no flux boundary) scenarios describe forward and back diffusion for a finite domain of a low-permeability layer with no flux boundary at the bottom. When the bottom of a low-permeability layer is considered as flux boundary, forward and back diffusion scenarios correspond to FFF (forward diffusion into finite domain with flux boundary) and BFF (back diffusion from finite domain with flux boundary). The scenarios and analytical solutions in this study may contribute to the determination of an efficient remediation method based on site characteristics such as a thickness of low-permeability zones or duration of contamination exposure.

국외에서는 DNAPL오염부지 정화처리 과정에서 오염된 저투수성 매체를 주요 관리대상으로 고려하며, 저투수성 매체로부터 역확산하는 오염물질과 대수층 오염 지속성에 관한 연구가 활발히 진행되어 왔다. 그러나 국내 지하수 분야에서는 관련 연구가 미비한 실정이기 때문에, 본 논문은 저투수성 매체에서 오염물질의 정확산 및 역확산 현상을 소개하고 대표적인 연구사례를 통해 그 중요성을 제안하고자 한다. 본 논문에서는 저투수성 매체의 경계조건에 따른 6개의 정확산 및 역확산 시나리오와 각각의 시나리오에 사용된 해석해를 제시하였다. FI (forward diffusion into infinite domain)와 BI (back diffusion from infinite domain) 시나리오는 저투수성 매체의 깊이를 무한하게 가정한 경우, 정확산과 역확산 시나리오를 나타내며 과거 대다수의 저투수성 매체와 관련된 연구에서 사용되었다. 최근 연구에서는 저투수성 매체의 깊이를 유한하게 고려하고 있으며, 본 연구에서 사용한 유한 경계에서 정확산 시나리오는 FFN(forward diffusion into finite domain with no flux boundary), 역확산 시나리오는 BFN (back diffusion from finite domain with no flux boundary)이다. 또한 저투수성 매체 하부 경계를 통한 오염물질의 이동이 가능할 때 정확산 시나리오는 FFF (forward diffusion into finite domain with flux boundary), 역확산 시나리오는 BFF (back diffusion from finite domain with flux boundary)에 해당한다. 본 논문에서 제시한 시나리오와 해석해를 사용한 모델링은 저투수성 매체의 깊이 또는 오염 노출 기간 등의 현장 특성에 맞는 오염처리 공법을 선정하는데 기여할 수 있다. 또한 모델링 결과는 대수층의 정화 이후에도 역확산으로 발생하는 오염의 지속기간, 오염 정도 등의 정보를 제공함으로써 보다 효율적인 오염 정화처리에 기여할 것으로 사료된다.

Keywords

References

  1. 김영석 (2014). 고농도 DNAPL 오염부지 정화를 위한 세정 및 생물학적 연계정화기술 개발. 토양 지하수 오염방지 기술 개발사업 최종보고서, 173-092-011.
  2. 이종열 (2014). 분산형 DNAPL 오염지역의 복합처리 정화기술 개발. 토양 지하수 오염방지 기술 개발사업 최종보고서, 173-092-012.
  3. 한국환경산업기술원, (2010). DNAPL 정화 및 처리기술. 기술동향 분석보고서, 2010 - 73.
  4. 환경부 (2014). 양수처리시스템을 이용한 DNAPL 오염확산 억제 및 저감기술개발. 토양 지하수 오염방지 기술 개발사업 최종보고서, 173-092-010.
  5. Allemand, H., Pessayre, D., Descatoire, V., DeGott, C., Feldmann, G. and Benhamou, J.P. (1978). Metabolic activation of trichloroethylene into a chemically reactive metabolite toxic to the liver. Journal of Pharmacology and Experimental Therapeutics, 204(3), p.714-723.
  6. Ball, W.P., Liu, C., Xia, G. and Young, D.F. (1997). A diffusion-based interpretation of tetrachloroethene and trichloroethene concentration profiles in a groundwater aquitard. Water Resources Research, v.33(12), p.2741-2757. https://doi.org/10.1029/97WR02135
  7. Bear, J. (1972). Dynamics of Fluids in Porous Media. Courier Dover publication, New york, 764p.
  8. Carslaw, H.S. and Jaeger, J.C. (1959). Conduction of heat in solids.pdf. Oxford: Clarendon Press, 2nd. Edit, 510p.
  9. Chapman, S.W. and Parker, B.L. (2005). Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research, v.41, p.1-16.
  10. Chen, X. and Jawitz, J.W. (2008). Dissolution Dynamics in Laboratory. Environmental Science & Technology, v.42(14), p.5285-5291. https://doi.org/10.1021/es7029653
  11. Chen, X. and Jawitz, J.W. (2009). Convergence of DNAPL source strength functions with site age. Environmental Science & Technology, v.43(24), p.9374-9379. https://doi.org/10.1021/es902108z
  12. Elcombe, C.R., Rose, M.S. and Pratt, I.S. (1985). Biochemical, histological, and ultrastructural changes in rat and mouse liver following the administration of trichloroethylene: Possible relevance to species differences in hepatocarcinogenicity. Toxicology and Applied Pharmacology, v.79(3), p.365-376. https://doi.org/10.1016/0041-008X(85)90135-8
  13. EPA (1992a). Estimating Potential for Occurrence of DNAPL at Superfund Sites, 1-9.
  14. EPA (1992b). Evaluation of the Likelihood of DNAPL Presence at NPL Sites: National Results. US Environmental Protection Agency, Office of Emergency and Remedial Response.
  15. Falta, R.W., Basu, N. and Rao, P.S. (2005a). Assessing impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. Journal of Contaminant Hydrology, v.79(1-2), p.45-66. https://doi.org/10.1016/j.jconhyd.2005.05.012
  16. Falta, R.W., Suresh Rao, P. and Basu, N. (2005b). Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. Journal of Contaminant Hydrology, v.78(4), p.259-280. https://doi.org/10.1016/j.jconhyd.2005.05.010
  17. Foster, S.S.D. (1975). The Chalk groundwater tritium anomaly - A possible explanation. Journal of Hydrology, v.25(1-2), p.159-165. https://doi.org/10.1016/0022-1694(75)90045-1
  18. Geosyntec Consultants (2004). Assessing the Feasibility of DNAPL Source Zone Remediation?: Review of case Studies.
  19. Gillham, R.W., Sudicky, E.A., Cherry, J.A. and Frind, E.O. (1984). An Advection Diffusion Concept for Solute Transport in Heterogeneous Unconsolidated Geological Deposits. Water Resources Research, v.20(3), p.369-378. https://doi.org/10.1029/WR020i003p00369
  20. Hadley, P.W. and Newell, C. (2014). The New Potential for Understanding Groundwater Contaminant Transport. Groundwater, v.52(2), p.174-186. https://doi.org/10.1111/gwat.12135
  21. Jawitz, J.W., Fure, A.D., Demmy, G.G., Berglund, S. and Rao, P.S.C. (2005). Groundwater contaminant flux reduction resulting from nonaqueous phase liquid mass reduction. Water Resources Research, v.41(10), p.1-15.
  22. Jeon, W.H., Lee, J.Y., Park, Y.C., Jun, S.C. and Cheon, J.Y. (2017) High density contaminants distribution at different depths by changes in groundwater levels. Journal of the Geological Society of Korea. v.53(3), p.467-476. https://doi.org/10.14770/jgsk.2017.53.3.467
  23. Jo, Y.J., Lee, J.Y., Yi, M.J. and K, H.S. (2010) Cluster analysis of TCE contaminated groundwater. Journal of the Geological Society of Korea, v.46, p.49-60.
  24. Ju, B.K. and Jeong S.W. (2008) Visualization and Quantification of Dissolution of Dense Nonaqueous Phase Liquid Entrapped in Porous Media. Journal of the Korea Organic Resource Recycling Association, v.16(1), p.46-52.
  25. Keely, J.F. (1989). Performance Evaluations of Pump-and-Treat Remediations 1. In Epa Environmental Engineering Sourcebook.
  26. Kim, J.H. and Yi, J.H. (1997) Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table. Journal of Korean Society of Environmental Engineers, v.2, p.51-62.
  27. Kueper, B.H., Stroo, H.F., Vogel, C.M. and Ward, C.H. (2014). Chlorinated Solvent Source Zone Remediation.
  28. Liu, C. and Ball, W.P. (1998). Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Advances in Water Resources, v.21(4), p.297-313. https://doi.org/10.1016/S0309-1708(96)00062-0
  29. Liu, C. and Ball, W.P. (2002). Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions: Predictions and measurements. GroundWater, v.20(2), p.175-184.
  30. Mackay, D.M. and Cherry, J.A. (1989). Groundwater contamination: Pump-and-treat remediation. Environmental Science & Technology, v.23(6), p.630-636. https://doi.org/10.1021/es00064a001
  31. McGuire, T.M., McDade, J.M. and Newell, C.J. (2006). Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monitoring & Remediation, v.26(1), p.73-84. https://doi.org/10.1111/j.1745-6592.2006.00054.x
  32. NRC (2005). Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press.
  33. Parker, B.L., Chapman, S.W. and Guilbeault, M.A. (2008). Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Journal of Contaminant Hydrology, v.102(1-2), p.86-104. https://doi.org/10.1016/j.jconhyd.2008.07.003
  34. Parker, J.C. and Park, E. (2004). Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resources Research, v.40(5).
  35. Philip, R.D. and Walter, G.R. (1993). Prediction of Flow and Hydraulic Head Fields for Vertical Circulation Wells, v.30(5), p.765-773. https://doi.org/10.1111/j.1745-6584.1992.tb01562.x
  36. Rao, P.S.C., Jawitz, J.W., McWhorter, D.B. and Sale, T.C. (2003). Comment on "Steady state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields" by T. C. Sale and D. B. McWhorter. Water Resources Research, v.39(3).
  37. Russell, H., Matthews, J. and Sewell, G. (1992). TCE Removal from Contaminated Soil and Groundwater. EPA Environmetal Engineering Sourcebook, p.87-100.
  38. Seyedabbasi, M.A., Newell, C.J., Adamson, D.T. and Sale, T.C. (2012). Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. Journal of Contaminant Hydrology, v.134, p.69-81. https://doi.org/10.1016/j.jconhyd.2012.03.010
  39. Starr, R.C., Gillham, R.W., Sudicky, E.A. and Theis, C.V. (1985). Experimental investigation of solute transport in stratified porous media: 2. The reactive case. Water Resources Research, v.21(7), p.1043-1050. https://doi.org/10.1029/WR021i007p01043
  40. Stroo, H.F., Leeson, A., Marqusee, J.A., Johnson, P.C., Ward, C.H., Kavanaugh, M.C., Sale, T.C., Newell, C.J., Pennell, K.D., Lebr n, C.A. and Unger, M. (2012). Chlorinated ethene source remediation: Lessons learned. Environmental Science and Technology, v.46(12), p.6438-6447. https://doi.org/10.1021/es204714w
  41. Tang, Y. and Aral, M.M. (1992a). Contaminant transport in layered porous media: 1. General solution. Water Resources Research, v.28(5), p.1389-1397. https://doi.org/10.1029/92WR00292
  42. Tang, Y. and Aral, M.M. (1992b). Contaminant transport in layered porous media: 2. Applications. Water Resources Research, v.28(5), p.1399-1406. https://doi.org/10.1029/92WR00294
  43. Wiedemeier, T.H., Rifai, H.S., Newell, C.J. and Wilson, J.T. (1999). Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons.
  44. Wilson, J.L. (1997). Removal of aqueous phase dissolved contamination: Non-chemically enhanced pump-and-treat. Subsurface Restoration, v.17, p.271-285.
  45. Yang, M., Annable, M.D. and Jawitz, J.W. (2015). Back diffusion from thin low permeability zones. Environmental Science and Technology, v.49(1), p.415-422. https://doi.org/10.1021/es5045634
  46. Yang, M., Annable, M.D. and Jawitz, J.W. (2017a). Field-scale forward and back diffusion through low-permeability zones. Journal of Contaminant Hydrology, v.202, p.47-58. https://doi.org/10.1016/j.jconhyd.2017.05.001
  47. Yang, M., Annable, M.D. and Jawitz, J.W. (2017b). Forward and back diffusion through argillaceous formations. Water Resources Research, v.53(5), p.4514-4523. https://doi.org/10.1002/2016WR019874
  48. Zhu, J. and Sykes, J.F. (2004). Simple screening models of NAPL dissolution in the subsurface. Journal of Contaminant Hydrology, v.72(1-4), p.245-258. https://doi.org/10.1016/j.jconhyd.2003.11.002