References
- Ahn, B.Y., Trinh, D.L., Zajchowski, L.D., Lee, B., Elwi, A.N., and Kim, S.W. (2010). Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29, 1155-1166. https://doi.org/10.1038/onc.2009.413
- Akagi, T. (2004). Oncogenic transformation of human cells: shortcomings of rodent model systems. Trends Mol. Med. 10, 542-548. https://doi.org/10.1016/j.molmed.2004.09.001
- Awe, K., Lambert, C., and Prange, R. (2008). Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein. FEBS lett. 582, 3179-3184. https://doi.org/10.1016/j.febslet.2008.07.062
- Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870. https://doi.org/10.1038/nature03482
- Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L.V., Kolettas, E., Niforou, K., Zoumpourlis, V.C., et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633-637. https://doi.org/10.1038/nature05268
- Benanti, J.A. and Galloway, D.A. (2004). Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell. Biol. 24, 2842-2852. https://doi.org/10.1128/MCB.24.7.2842-2852.2004
- Campisi, J. and d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740. https://doi.org/10.1038/nrm2233
- Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
- Choi, E.M., Kim, S.R., Lee, E.J., and Han, J.A. (2009). Cyclooxygenase-2 functionally inactivates p53 through a physical interaction with p53. Biochim. Biophys. Acta 1793, 1354-1365. https://doi.org/10.1016/j.bbamcr.2009.05.006
- Courtois-Cox, S., Jones, S.L., and Cichowski, K. (2008). Many roads lead to oncogene-induced senescence. Oncogene 27, 2801-2809. https://doi.org/10.1038/sj.onc.1210950
- Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C., Garre, M., Nuciforo, P.G., Bensimon, A., et al. (2006). Oncogeneinduced senescence is a DNA damage response triggered by DNA hyperreplication. Nature 444, 638-642. https://doi.org/10.1038/nature05327
- Di Micco, R., Fumagalli, M., and d'Adda di Fagagna, F. (2007). Breaking news: high-speed race ends in arrest--how oncogenes induce senescence. Trends Cell Biol. 17, 529-536. https://doi.org/10.1016/j.tcb.2007.07.012
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
- Ferbeyre, G., de Stanchina, E., Lin, A.W., Querido, E., McCurrach, M.E., Hannon, G.J., and Lowe, S.W. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22, 3497-3508. https://doi.org/10.1128/MCB.22.10.3497-3508.2002
- Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.
- Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogeneinduced DNA damage model for cancer development. Science 319, 1352-1355. https://doi.org/10.1126/science.1140735
- Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
- Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hartl, F.U., Bracher, A., and Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332. https://doi.org/10.1038/nature10317
- Jozefczuk, J., Drews, K., and Adjaye, J. (2012). Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J. Vis. Exp. 64, 3854.
- Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551. https://doi.org/10.1038/nature10599
- Kim, S.R., Park, J.H., Lee, M.E., Park, J.S., Park, S.C., and Han, J.A. (2008). Selective COX-2 inhibitors modulate cellular senescence in human dermal fibroblasts in a catalytic activity-independent manner. Mech. Ageing Dev. 129, 706-713. https://doi.org/10.1016/j.mad.2008.09.003
- Kuk, M.U., Kim, J.W., Lee, Y.S., Cho, K.A., Park, J.T., and Park, S.C. (2019). Alleviation of senescence via ATM inhibition in accelerated aging models. Mol. Cells 42, 210-217. https://doi.org/10.14348/molcells.2018.0352
- Kurisu, J., Honma, A., Miyajima, H., Kondo, S., Okumura, M., and Imaizumi, K. (2003). MDG1/ERdj4, an ER-resident DnaJ family member, suppresses cell death induced by ER stress. Genes Cells 8, 189-202. https://doi.org/10.1046/j.1365-2443.2003.00625.x
- Lee, H.J., Kim, J.M., Kim, K.H., Heo, J.I., Kwak, S.J., and Han, J.A. (2015). Genotoxic stress/p53-induced DNAJB9 inhibits the pro-apoptotic function of p53. Cell Death Differ. 22, 86-95. https://doi.org/10.1038/cdd.2014.116
- Nardella, C., Clohessy, J.G., Alimonti, A., and Pandolfi, P.P. (2011). Prosenescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503-511. https://doi.org/10.1038/nrc3057
- Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716. https://doi.org/10.1016/S0092-8674(03)00401-X
- Ory, D.S., Neugeboren, B.A., and Mulligan, R.C. (1996). A stable humanderived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. U. S. A. 93, 11400-11406. https://doi.org/10.1073/pnas.93.21.11400
- Qiu, X.B., Shao, Y.M., Miao, S., and Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560-2570. https://doi.org/10.1007/s00018-006-6192-6
- Sarkisian, C.J., Keister, B.A., Stairs, D.B., Boxer, R.B., Moody, S.E., and Chodosh, L.A. (2007). Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493-505. https://doi.org/10.1038/ncb1567
- Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
- Shen, Y., Meunier, L., and Hendershot, L.M. (2002). Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 277, 15947-15956. https://doi.org/10.1074/jbc.M112214200
- Tomayko, M.M. and Reynolds, C.P. (1989). Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148-154. https://doi.org/10.1007/BF00300234
- Trinh, D.L., Elwi, A.N., and Kim, S.W. (2010). Direct interaction between p53 and Tid1 proteins affects p53 mitochondrial localization and apoptosis. Oncotarget 1, 396-404. https://doi.org/10.18632/oncotarget.174
- Vos, M.J., Hageman, J., Carra, S., and Kampinga, H.H. (2008). Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47, 7001-7011. https://doi.org/10.1021/bi800639z
- Walsh, P., Bursac, D., Law, Y.C., Cyr, D., and Lithgow, T. (2004). The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5, 567-571. https://doi.org/10.1038/sj.embor.7400172
- Zhao, J.J., Roberts, T.M., and Hahn, W.C. (2004). Functional genetics and experimental models of human cancer. Trends Mol. Med. 10, 344-350. https://doi.org/10.1016/j.molmed.2004.05.005
Cited by
- Cadmium-Associated Molecular Signatures in Cancer Cell Models vol.13, pp.11, 2020, https://doi.org/10.3390/cancers13112823
- Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members vol.22, pp.24, 2021, https://doi.org/10.3390/ijms222413527