DOI QR코드

DOI QR Code

Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis

  • Koh, Eun-Young (Department of Biomedical Laboratory Science, Konyang University) ;
  • You, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University) ;
  • Jung, Se-Hwa (Department of Biomedical Laboratory Science, Konyang University) ;
  • Kim, Pyung-Hwan (Department of Biomedical Laboratory Science, Konyang University)
  • Received : 2019.10.11
  • Accepted : 2020.01.28
  • Published : 2020.04.30

Abstract

Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.

Keywords

References

  1. Abboud, M.M., Al Awaida, W., Alkhateeb, H.H., and Abu-Ayyad, A.N. (2019). Antitumor action of amygdalin on human breast cancer cells by selective sensitization to oxidative stress. Nutr. Cancer 71, 483-490. https://doi.org/10.1080/01635581.2018.1508731
  2. Ahn, S.M., Goode, R.J., and Simpson, R.J. (2008). Stem cell markers: insights from membrane proteomics? Proteomics 8, 4946-4957. https://doi.org/10.1002/pmic.200800312
  3. Bailey, P.C., Lee, R.M., Vitolo, M.I., Pratt, S.J.P., Ory, E., Chakrabarti, K., Lee, C.J., Thompson, K.N., and Martin, S.S. (2018). Single-cell tracking of breast cancer cells enables prediction of sphere formation from early cell divisions. iScience 8, 29-39. https://doi.org/10.1016/j.isci.2018.08.015
  4. Balk-Moller, E., Kim, J., Hopkinson, B., Timmermans-Wielenga, V., Petersen, O.W., and Villadsen, R. (2014). A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am. J. Pathol. 184, 1198-1208. https://doi.org/10.1016/j.ajpath.2013.12.013
  5. Baumann, M., Krause, M., and Hill, R. (2008). Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545-554. https://doi.org/10.1038/nrc2419
  6. Blumenthal, R.D., Hansen, H.J., and Goldenberg, D.M. (2005). Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 65, 8809-8817. https://doi.org/10.1158/0008-5472.CAN-05-0420
  7. Blumenthal, R.D., Leon, E., Hansen, H.J., and Goldenberg, D.M. (2007). Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 7, 2. https://doi.org/10.1186/1471-2407-7-2
  8. Britzen-Laurent, N., Lipnik, K., Ocker, M., Naschberger, E., Schellerer, V.S., Croner, R.S., Vieth, M., Waldner, M., Steinberg, P., Hohenadl, C., et al. (2013). GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis 34, 153-162. https://doi.org/10.1093/carcin/bgs310
  9. Calvet, C.Y., Andre, F.M., and Mir, L.M. (2014). The culture of cancer cell lines as tumorspheres does not systematically result in cancer stem cell enrichment. PLoS One 9, e89644. https://doi.org/10.1371/journal.pone.0089644
  10. Cameron, S., de Long, L.M., Hazar-Rethinam, M., Topkas, E., Endo-Munoz, L., Cumming, A., Gannon, O., Guminski, A., and Saunders, N. (2012). Focal overexpression of CEACAM6 contributes to enhanced tumorigenesis in head and neck cancer via suppression of apoptosis. Mol. Cancer 11, 74. https://doi.org/10.1186/1476-4598-11-74
  11. Cao, Z., Livas, T., and Kyprianou, N. (2016). Anoikis and EMT: lethal 'liaisons' during cancer progression. Crit. Rev. Oncog. 21, 155-168. https://doi.org/10.1615/CritRevOncog.2016016955
  12. Chen, L.S., Wang, A.X., Dong, B., Pu, K.F., Yuan, L.H., and Zhu, Y.M. (2012). A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer. Chin. J. Cancer 31, 564-572. https://doi.org/10.5732/cjc.011.10444
  13. Colak, S. and Medema, J.P. (2014). Cancer stem cells--important players in tumor therapy resistance. FEBS J. 281, 4779-4791. https://doi.org/10.1111/febs.13023
  14. Crabtree, J.S. and Miele, L. (2018). Breast cancer stem cells. Biomedicines 6, 77. https://doi.org/10.3390/biomedicines6030077
  15. Deonarain, M.P., Kousparou, C.A., and Epenetos, A.A. (2009). Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1, 12-25. https://doi.org/10.4161/mabs.1.1.7347
  16. Diaz-Fernandez, A., Miranda-Castro, R., de-Los-Santos-Alvarez, N., and Lobo-Castanon, M.J. (2018). Post-translational modifications in tumor biomarkers: the next challenge for aptamers? Anal. Bioanal. Chem. 410, 2059-2065. https://doi.org/10.1007/s00216-018-0861-9
  17. Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., and Wicha, M.S. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253-1270. https://doi.org/10.1101/gad.1061803
  18. Elias, D., Vever, H., Laenkholm, A.V., Gjerstorff, M.F., Yde, C.W., Lykkesfeldt, A.E., and Ditzel, H.J. (2015). Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene 34, 1919-1927. https://doi.org/10.1038/onc.2014.138
  19. Gemei, M., Mirabelli, P., Di Noto, R., Corbo, C., Iaccarino, A., Zamboli, A., Troncone, G., Galizia, G., Lieto, E., Del Vecchio, L., et al. (2013). CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer 119, 729-738. https://doi.org/10.1002/cncr.27794
  20. Hamam, R., Hamam, D., Alsaleh, K.A., Kassem, M., Zaher, W., Alfayez, M., Aldahmash, A., and Alajez, N.M. (2017). Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 8, e3045. https://doi.org/10.1038/cddis.2017.440
  21. Henderson, T., Chen, M., Darrow, M.A., Li, C.S., Chiu, C.L., Monjazeb, A.M., Murphy, W.J., and Canter, R.J. (2018). Alterations in cancer stem-cell marker CD44 expression predict oncologic outcome in soft-tissue sarcomas. J. Surg. Res. 223, 207-214. https://doi.org/10.1016/j.jss.2017.11.016
  22. Hertz, E., Cadona, F.C., Machado, A.K., Azzolin, V., Holmrich, S., Assmann, C., Ledur, P., Ribeiro, E.E., DE Souza Filho, O.C., Manica-Cattani, M.F., et al. (2015). Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs. Mol. Clin. Oncol. 3, 37-43. https://doi.org/10.3892/mco.2014.438
  23. Honeth, G., Bendahl, P.O., Ringner, M., Saal, L.H., Gruvberger-Saal, S.K., Lovgren, K., Grabau, D., Ferno, M., Borg, A., and Hegardt, C. (2008). The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 10, R53. https://doi.org/10.1186/bcr2108
  24. Hong, K.P., Shin, M.H., Yoon, S., Ji, G.Y., Moon, Y.R., Lee, O.J., Choi, S.Y., Lee, Y.M., Koo, J.H., Lee, H.C., et al. (2015). Therapeutic effect of anti CEACAM6 monoclonal antibody against lung adenocarcinoma by enhancing anoikis sensitivity. Biomaterials 67, 32-41. https://doi.org/10.1016/j.biomaterials.2015.07.012
  25. Huang, R. and Rofstad, E.K. (2017). Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8, 35351-35367. https://doi.org/10.18632/oncotarget.10169
  26. Jaggupilli, A. and Elkord, E. (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin. Dev. Immunol. 2012, 708036.
  27. Johnson, B. and Mahadevan, D. (2015). Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin. Cancer Drugs 2, 100-111. https://doi.org/10.2174/2212697X02666150602215823
  28. Jung, H.J. (2017). Chemical proteomic approaches targeting cancer stem cells: a review of current literature. Cancer Genomics Proteomics 14, 315-327.
  29. Kim, M.H., Kim, M.H., Kim, K.S., Park, M.J., Jeong, J.H., Park, S.W., Ji, Y.H., Kim, K.I., Lee, T.S., Ryu, P.Y., et al. (2016). In vivo monitoring of CD44+ cancer stem-like cells by gamma-irradiation in breast cancer. Int. J. Oncol. 48, 2277-2286. https://doi.org/10.3892/ijo.2016.3493
  30. Kim, W.T. and Ryu, C.J. (2017). Cancer stem cell surface markers on normal stem cells. BMB Reports 50, 285. https://doi.org/10.5483/BMBRep.2017.50.6.039
  31. Kim, Y.J., Park, H.B., Kim, P.H., Park, J.S., and Kim, K.S. (2017). Enhanced anti-cancer efficacy in MCF-7 breast cancer cells by combined drugs of metformin and sodium salicylate. Biomed. Sci. Lett. 23, 290-294. https://doi.org/10.15616/BSL.2017.23.3.290
  32. Koch, U., Krause, M., and Baumann, M. (2010). Cancer stem cells at the crossroads of current cancer therapy failures--radiation oncology perspective. Semin. Cancer Biol. 20, 116-124. https://doi.org/10.1016/j.semcancer.2010.02.003
  33. Krishnamurthy, N. and Kurzrock, R. (2018). Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat. Rev. 62, 50-60. https://doi.org/10.1016/j.ctrv.2017.11.002
  34. Lee, E.C., Fitzgerald, M., Bannerman, B., Donelan, J., Bano, K., Terkelsen, J., Bradley, D.P., Subakan, O., Silva, M.D., Liu, R., et al. (2011). Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin. Cancer Res. 17, 7313-7323. https://doi.org/10.1158/1078-0432.CCR-11-0636
  35. Lee, H., Jang, Y., Park, S., Jang, H., Park, E.J., Kim, H.J., and Kim, H. (2018). Development and evaluation of a CEACAM6-targeting theranostic nanomedicine for photoacoustic-based diagnosis and chemotherapy of metastatic cancer. Theranostics 8, 4247-4261. https://doi.org/10.7150/thno.25131
  36. Lee, J.Y., Kim, D.G., Kim, B.G., Yang, W.S., Hong, J., Kang, T., Oh, Y.S., Kim, K.R., Han, B.W., Hwang, B.J., et al. (2014). Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J. Cell Sci. 127, 4234-4245. https://doi.org/10.1242/jcs.152470
  37. Leth-Larsen, R., Lund, R., Hansen, H.V., Laenkholm, A.V., Tarin, D., Jensen, O.N., and Ditzel, H.J. (2009). Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol. Cell. Proteomics 8, 1436-1449. https://doi.org/10.1074/mcp.M800061-MCP200
  38. Lin, S.E., Barrette, A.M., Chapin, C., Gonzales, L.W., Gonzalez, R.F., Dobbs, L.G., and Ballard, P.L. (2015). Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice. Physiol. Rep. 3, e12657. https://doi.org/10.14814/phy2.12657
  39. Lombardo, Y., de Giorgio, A., Coombes, C.R., Stebbing, J., and Castellano, L. (2015). Mammosphere formation assay from human breast cancer tissues and cell lines. J. Vis. Exp. 97, e52671.
  40. Luo, M., Clouthier, S.G., Deol, Y., Liu, S., Nagrath, S., Azizi, E., and Wicha, M.S. (2015). Breast cancer stem cells: current advances and clinical implications. Methods Mol. Biol. 1293, 1-49. https://doi.org/10.1007/978-1-4939-2519-3_1
  41. Maugeri-Sacca, M., Vigneri, P., and De Maria, R. (2011). Cancer stem cells and chemosensitivity. Clin. Cancer Res. 17, 4942-4947. https://doi.org/10.1158/1078-0432.CCR-10-2538
  42. Meacham, C.E. and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337. https://doi.org/10.1038/nature12624
  43. Morrison, B.J., Hastie, M.L., Grewal, Y.S., Bruce, Z.C., Schmidt, C., Reynolds, B.A., Gorman, J.J., and Lopez, J.A. (2012). Proteomic comparison of mcf-7 tumoursphere and monolayer cultures. PLoS One 7, e52692. https://doi.org/10.1371/journal.pone.0052692
  44. Nassar, D. and Blanpain, C. (2016). Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11, 47-76. https://doi.org/10.1146/annurev-pathol-012615-044438
  45. Nie, S., McDermott, S.P., Deol, Y., Tan, Z., Wicha, M.S., and Lubman, D.M. (2015). A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations. Proteomics 15, 3772-3783. https://doi.org/10.1002/pmic.201500002
  46. Nilendu, P., Kumar, A., Kumar, A., Pal, J.K., and Sharma, N.K. (2018). Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int. J. Cancer 142, 7-17. https://doi.org/10.1002/ijc.30898
  47. Panczyszyn, A. and Wieczorek, M. (2012). [Role of CEACAM in neutrophil activation]. Postepy Hig. Med. Dosw. (Online) 66, 574-582. Polish. https://doi.org/10.5604/17322693.1008194
  48. Pecina, P., Nuskova, H., Karbanova, V., Kaplanova, V., Mracek, T., and Houstek, J. (2018). Role of the mitochondrial ATP synthase central stalk subunits gamma and delta in the activity and assembly of the mammalian enzyme. Biochim. Biophys. Acta Bioenerg. 1859, 374-381. https://doi.org/10.1016/j.bbabio.2018.02.007
  49. Pogozheva, I.D., Tristram-Nagle, S., Mosberg, H.I., and Lomize, A.L. (2013). Structural adaptations of proteins to different biological membranes. Biochim. Biophys. Acta 1828, 2592-2608. https://doi.org/10.1016/j.bbamem.2013.06.023
  50. Qiu, X., Guo, H., Yang, J., Ji, Y., Wu, C.S., and Chen, X. (2018). Downregulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci. Rep. 8, 1679. https://doi.org/10.1038/s41598-018-19828-7
  51. Quintero, M., Adamoski, D., Reis, L.M.D., Ascencao, C.F.R., Oliveira, K.R.S., Goncalves, K.A., Dias, M.M., Carazzolle, M.F., and Dias, S.M.G. (2017). Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer 17, 727. https://doi.org/10.1186/s12885-017-3726-2
  52. Ricardo, S., Vieira, A.F., Gerhard, R., Leitao, D., Pinto, R., Cameselle-Teijeiro, J.F., Milanezi, F., Schmitt, F., and Paredes, J. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64, 937-946. https://doi.org/10.1136/jcp.2011.090456
  53. Rizeq, B., Zakaria, Z., and Ouhtit, A. (2018). Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 109, 33-42. https://doi.org/10.1111/cas.13437
  54. Rodini, C.O., Lopes, N.M., Lara, V.S., and Mackenzie, I.C. (2017). Oral cancer stem cells - properties and consequences. J. Appl. Oral Sci. 25, 708-715. https://doi.org/10.1590/1678-7757-2016-0665
  55. Santiago-Gomez, A., Kedward, T., Simoes, B.M., Dragoni, I., NicAmhlaoibh, R., Trivier, E., Sabin, V., Gee, J.M., Sims, A.H., Howell, S.J., et al. (2019). PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer. Cancer Lett. 458, 66-75. https://doi.org/10.1016/j.canlet.2019.05.014
  56. Scadden, D.T. (2006). The stem-cell niche as an entity of action. Nature 441, 1075-1079. https://doi.org/10.1038/nature04957
  57. Scheel, C., Eaton, E.N., Li, S.H., Chaffer, C.L., Reinhardt, F., Kah, K.J., Bell, G., Guo, W., Rubin, J., Richardson, A.L., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926-940. https://doi.org/10.1016/j.cell.2011.04.029
  58. Shi, X., Chen, G., Liu, X., Qiu, Y., Yang, S., Zhang, Y., Fang, X., Zhang, C., and Liu, X. (2015). Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. Int. J. Mol. Med. 35, 31-38. https://doi.org/10.3892/ijmm.2014.1997
  59. Skvortsov, S., Debbage, P., and Skvortsova, I. (2014). Proteomics of cancer stem cells. Int. J. Radiat. Biol. 90, 653-658. https://doi.org/10.3109/09553002.2013.873559
  60. Song, M. and Giovannucci, E.L. (2015). Cancer risk: many factors contribute. Science 347, 728-729. https://doi.org/10.1126/science.aaa6094
  61. Vinogradov, S. and Wei, X. (2012). Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond.) 7, 597-615. https://doi.org/10.2217/nnm.12.22
  62. Wang, R., Lv, Q., Meng, W., Tan, Q., Zhang, S., Mo, X., and Yang, X. (2014). Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J. Thorac. Dis. 6, 829-837.
  63. Yan, Y., Zuo, X., and Wei, D. (2015). Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl. Med. 4, 1033-1043. https://doi.org/10.5966/sctm.2015-0048
  64. Yang, F., Xu, J., Tang, L., and Guan, X. (2017). Breast cancer stem cell: the roles and therapeutic implications. Cell. Mol. Life Sci. 74, 951-966. https://doi.org/10.1007/s00018-016-2334-7
  65. Zhong, G., Qin, S., Townsend, D., Schulte, B.A., Tew, K.D., and Wang, G.Y. (2019). Oxidative stress induces senescence in breast cancer stem cells. Biochem. Biophys. Res. Commun. 514, 1204-1209. https://doi.org/10.1016/j.bbrc.2019.05.098
  66. Zhu, P. and Fan, Z. (2018). Cancer stem cells and tumorigenesis. Biophys. Rep. 4, 178-188. https://doi.org/10.1007/s41048-018-0062-2

Cited by

  1. Polycystin-1 Enhances Stemmness Potential of Umbilical Cord Blood-Derived Mesenchymal Stem Cells vol.22, pp.9, 2020, https://doi.org/10.3390/ijms22094868