DOI QR코드

DOI QR Code

FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of InsulinDegrading Enzyme

  • Lin, Yan (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Liu, Jia (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Chen, Jia (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Yao, Chun (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Yang, Yunwen (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Wang, Jie (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Zhuang, Hongqin (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Hua, Zi-Chun (The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
  • Received : 2019.08.28
  • Accepted : 2020.01.19
  • Published : 2020.04.30

Abstract

Our previous study revealed a novel role of Fas-associated death domain-containing protein (FADD) in islet development and insulin secretion. Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes (T2DM). The current study was designed to investigate the effect of FADD phosphorylation on IDE. We found that the mRNA and protein levels of IDE were significantly downregulated in FADD-D mouse livers compared with control mice. Quantitative real-time polymerase chain reaction analysis showed that FADD regulates the expression of IDE at the transcriptional level without affecting the stability of the mRNA in HepG2 cells. Following treatment with cycloheximide, the IDE protein degradation rate was found to be increased in both FADD-D primary hepatocytes and FADD-knockdown HepG2 cells. Additionally, IDE expression levels were reduced in insulin-stimulated primary hepatocytes from FADD-D mice compared to those from control mice. Moreover, FADD phosphorylation promotes nuclear translocation of FoxO1, thus inhibiting the transcriptional activity of the IDE promoter. Together, these findings imply a novel role of FADD in the reduction of protein stability and expression levels of IDE.

Keywords

References

  1. Abdul-Hay, S.O., Kang, D., McBride, M., Li, L., Zhao, J., and Leissring, M.A. (2011). Deletion of insulin-degrading enzyme elicits antipodal, agedependent effects on glucose and insulin tolerance. PLoS One 6, e20818. https://doi.org/10.1371/journal.pone.0020818
  2. Bojsen-Moller, K.N., Lundsgaard, A.M., Madsbad, S., Kiens, B., and Holst, J.J. (2018). Hepatic insulin clearance in regulation of systemic insulin concentrations-role of carbohydrate and energy availability. Diabetes 67, 2129-2136. https://doi.org/10.2337/db18-0539
  3. Bonnefond, A., Froguel, P., and Vaxillaire, M. (2010). The emerging genetics of type 2 diabetes. Trends Mol. Med. 16, 407-416. https://doi.org/10.1016/j.molmed.2010.06.004
  4. Bonnet, M.C., Preukschat, D., Welz, P.S., van Loo, G., Ermolaeva, M.A., Bloch, W., Haase, I., and Pasparakis, M. (2011). The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572-582. https://doi.org/10.1016/j.immuni.2011.08.014
  5. Cao, Y., Jiang, X., Ma, H., Wang, Y., Xue, P., and Liu, Y. (2016). SIRT1 and insulin resistance. J. Diabetes Complications 30, 178-183. https://doi.org/10.1016/j.jdiacomp.2015.08.022
  6. Cheng, W., Zhang, R., Yao, C., He, L., Jia, K., Yang, B., Du, P., Zhuang, H., Chen, J., Liu, Z., et al. (2014). A critical role of Fas-associated protein with death domain phosphorylation in intracellular reactive oxygen species homeostasis and aging. Antioxid. Redox Signal. 21, 33-45. https://doi.org/10.1089/ars.2013.5390
  7. Cheng, Z. and White, M.F. (2011). Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid. Redox Signal. 14, 649-661. https://doi.org/10.1089/ars.2010.3370
  8. Chinnaiyan, A.M., O'Rourke, K., Tewari, M., and Dixit, V.M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. https://doi.org/10.1016/0092-8674(95)90071-3
  9. Duckworth, W.C., Bennett, R.G., and Hamel, F.G. (1998). Insulin degradation: progress and potential. Endocr. Rev. 19, 608-624. https://doi.org/10.1210/edrv.19.5.0349
  10. Eckenrode, S., Marron, M.P., Nicholls, R., Yang, M.C., Yang, J.J., Guida Fonseca, L.C., and She, J.X. (2000). Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses. Hum. Genet. 106, 14-18. https://doi.org/10.1007/s004399900186
  11. Hua, Z.C., Sohn, S.J., Kang, C., Cado, D., and Winoto, A. (2003). A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 18, 513-521. https://doi.org/10.1016/S1074-7613(03)00083-9
  12. Imtiyaz, H.Z., Zhou, X., Zhang, H., Chen, D., Hu, T., and Zhang, J. (2009). The death domain of FADD is essential for embryogenesis, lymphocyte development, and proliferation. J. Biol. Chem. 284, 9917-9926. https://doi.org/10.1074/jbc.M900249200
  13. Kabra, N.H., Kang, C., Hsing, L.C., Zhang, J., and Winoto, A. (2001). T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl. Acad. Sci. U. S. A. 98, 6307-6312. https://doi.org/10.1073/pnas.111158698
  14. Lee, E.W., Seo, J., Jeong, M., Lee, S., and Song, J. (2012). The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep. 45, 496-508. https://doi.org/10.5483/BMBRep.2012.45.9.186
  15. Lu, M., Wan, M., Leavens, K.F., Chu, Q., Monks, B.R., Fernandez, S., Ahima, R.S., Ueki, K., Kahn, C.R., and Birnbaum, M.J. (2012). Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388-395. https://doi.org/10.1038/nm.2686
  16. Matsumoto, M., Han, S., Kitamura, T., and Accili, D. (2006). Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464-2472.
  17. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R.A., and Accili, D. (2007). Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208-216. https://doi.org/10.1016/j.cmet.2007.08.006
  18. Matsuyoshi, S., Shimada, K., Nakamura, M., Ishida, E., and Konishi, N. (2006). FADD phosphorylation is critical for cell cycle regulation in breast cancer cells. Br. J. Cancer 94, 532-539. https://doi.org/10.1038/sj.bjc.6602955
  19. Moriwaki, M., Itoh, N., Miyagawa, J., Yamamoto, K., Imagawa, A., Yamagata, K., Iwahashi, H., Nakajima, H., Namba, M., Nagata, S., et al. (1999). Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset type I diabetes mellitus. Diabetologia 42, 1332-1340. https://doi.org/10.1007/s001250051446
  20. Pirot, P., Cardozo, A.K., and Eizirik, D.L. (2008). Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq. Bras. Endocrinol. Metabol. 52, 156-165. https://doi.org/10.1590/S0004-27302008000200003
  21. Pivovarova, O., Hohn, A., Grune, T., Pfeiffer, A.F., and Rudovich, N. (2016). Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann. Med. 48, 614-624. https://doi.org/10.1080/07853890.2016.1197416
  22. Pivovarova, O., von Loeffelholz, C., Ilkavets, I., Sticht, C., Zhuk, S., Murahovschi, V., Lukowski, S., Docke, S., Kriebel, J., de las Heras Gala, T., et al. (2015). Modulation of insulin degrading enzyme activity and liver cell proliferation. Cell Cycle 14, 2293-2300. https://doi.org/10.1080/15384101.2015.1046647
  23. Pyo, J.O., Jang, M.H., Kwon, Y.K., Lee, H.J., Jun, J.I., Woo, H.N., Cho, D.H., Choi, B., Lee, H., Kim, J.H., et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem. 280, 20722-20729. https://doi.org/10.1074/jbc.M413934200
  24. Rezende, L.F., Camargo, R.L., Branco, R.C., Cappelli, A.P., Boschero, A.C., and Carneiro, E.M. (2014). Reduced insulin clearance and lower insulindegrading enzyme expression in the liver might contribute to the thrifty phenotype of protein-restricted mice. Br. J. Nutr. 112, 900-907. https://doi.org/10.1017/S0007114514001238
  25. Rubenstein, A.H., Pottenger, L.A., Mako, M., Getz, G.S., and Steiner, D.F. (1972). The metabolism of proinsulin and insulin by the liver. J. Clin. Invest. 51, 912-921. https://doi.org/10.1172/JCI106886
  26. Shen, Y., Joachimiak, A., Rosner, M.R., and Tang, W.J. (2006). Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443, 870-874. https://doi.org/10.1038/nature05143
  27. Shimada, K., Nakamura, M., Ishida, E., and Konishi, N. (2006). Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer. Histol. Histopathol. 21, 415-422.
  28. Silva, D.G., Petrovsky, N., Socha, L., Slattery, R., Gatenby, P., and Charlton, B. (2003). Mechanisms of accelerated immune-mediated diabetes resulting from islet beta cell expression of a Fas ligand transgene. J. Immunol. 170, 4996-5002. https://doi.org/10.4049/jimmunol.170.10.4996
  29. Sin, T.K., Yung, B.Y., and Siu, P.M. (2015). Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell. Physiol. Biochem. 35, 541-552. https://doi.org/10.1159/000369718
  30. Steneberg, P., Bernardo, L., Edfalk, S., Lundberg, L., Backlund, F., Ostenson, C.G., and Edlund, H. (2013). The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of alpha-synuclein levels in beta-cells. Diabetes 62, 2004-2014. https://doi.org/10.2337/db12-1045
  31. Strandmark, K.M. and Hallberg, L.R.M. (2007). The origin of workplace bullying: experiences from the perspective of bully victims in the public service sector. J. Nurs. Manag. 15, 332-341. https://doi.org/10.1111/j.1365-2834.2007.00662.x
  32. Thomas, L.R., Henson, A., Reed, J.C., Salsbury, F.R., and Thorburn, A. (2004). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J. Biol. Chem. 279, 32780-32785. https://doi.org/10.1074/jbc.M401680200
  33. Titchenell, P.M., Lazar, M.A., and Birnbaum, M.J. (2017). Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. 28, 497-505. https://doi.org/10.1016/j.tem.2017.03.003
  34. Valera Mora, M.E., Scarfone, A., Calvani, M., Greco, A.V., and Mingrone, G. (2003). Insulin clearance in obesity. J. Am. Coll. Nutr. 22, 487-493. https://doi.org/10.1080/07315724.2003.10719326
  35. Vettorazzi, J.F., Kurauti, M.A., Soares, G.M., Borck, P.C., Ferreira, S.M., Branco, R.C.S., Michelone, L.S.L., Boschero, A.C., Junior, J.M.C., and Carneiro, E.M. (2017). Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Sci. Rep. 7, 14876. https://doi.org/10.1038/s41598-017-13974-0
  36. Villa-Perez, P., Merino, B., Fernandez-Diaz, C.M., Cidad, P., Lobaton, C.D., Moreno, A., Muturi, H.T., Ghadieh, H.E., Najjar, S.M., Leissring, M.A., et al. (2018). Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism 88, 1-11. https://doi.org/10.1016/j.metabol.2018.08.001
  37. Welz, P.S., Wullaert, A., Vlantis, K., Kondylis, V., Fernandez-Majada, V., Ermolaeva, M., Kirsch, P., Sterner-Kock, A., van Loo, G., and Pasparakis, M. (2011). FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330-334. https://doi.org/10.1038/nature10273
  38. Xiong, S., Salazar, G., Patrushev, N., and Alexander, R.W. (2011). FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 286, 5289-5299. https://doi.org/10.1074/jbc.M110.163667
  39. Yao, C., Zhuang, H., Cheng, W., Lin, Y., Du, P., Yang, B., Huang, X., Chen, S., Hu, Q., and Hua, Z.C. (2015). FADD phosphorylation impaired islet morphology and function. J. Cell. Physiol. 230, 1448-1456. https://doi.org/10.1002/jcp.24885
  40. Yao, C., Zhuang, H., Du, P., Cheng, W., Yang, B., Guan, S., Hu, Y., Zhu, D., Christine, M., Shi, L., et al. (2013). Role of Fas-associated death domaincontaining protein (FADD) phosphorylation in regulating glucose homeostasis: from proteomic discovery to physiological validation. Mol. Cell. Proteomics 12, 2689-2700. https://doi.org/10.1074/mcp.M113.029306
  41. Zhang, L., Ding, Q., Wang, P., and Wang, Z. (2013). An upstream promoter element blocks the reverse transcription of the mouse insulin-degrading enzyme gene. Biochem. Biophys. Res. Commun. 430, 26-31. https://doi.org/10.1016/j.bbrc.2012.11.052
  42. Zhang, W., Patil, S., Chauhan, B., Guo, S., Powell, D.R., Le, J., Klotsas, A., Matika, R., Xiao, X., Franks, R., et al. (2006). FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105-10117. https://doi.org/10.1074/jbc.M600272200
  43. Zhuang, H., Wang, X., Zha, D., Gan, Z., Cai, F., Du, P., Yang, Y., Yang, B., Zhang, X., Yao, C., et al. (2016). FADD is a key regulator of lipid metabolism. EMBO Mol. Med. 8, 895-918. https://doi.org/10.15252/emmm.201505924

Cited by

  1. Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme vol.9, pp.1, 2021, https://doi.org/10.3390/biomedicines9010086