DOI QR코드

DOI QR Code

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Mohamed, Norhan A. (Engineering Mathematics and Physics Department, Faculty of Engineering, Zagazig University)
  • Received : 2019.09.05
  • Accepted : 2019.11.20
  • Published : 2020.04.25

Abstract

This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Keywords

Acknowledgement

Supported by : King Abdulaziz University

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. (DF-059-135-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., Int. J., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
  2. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  3. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  4. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  5. Akbas, S.D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
  6. Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  7. Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
  8. Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
  9. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., Int. J., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  10. Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
  11. Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
  12. Baroudi, S., Najar, F. and Jemai, A. (2018), "Static and dynamic analytical coupled field analysis of piezoelectric flexoelectric nanobeams: A strain gradient theory approach", Int. J. Solids Struct., 135, 110-124. https://doi.org/10.1016/j.ijsolstr.2017.11.014
  13. Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012
  14. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
  15. Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
  16. Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of microcontinuum theories", Int. J. Solids Struct., 41(8), 2085-2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030
  17. Cortes, C., Osorno, M., Uribe, D., Steeb, H., Ruiz-Salguero, O., Barandiaran, I. and Florez, J. (2019), "Geometry simplification of open-cell porous materials for elastic deformation FEA", Eng. Comput., 35(1), 257-276. https://doi.org/10.1007/s00366-018-0597-3
  18. El-Sinawi, A.H., Bakri-Kassem, M., Landolsi, T. and Awad, O. (2015), "A novel comprehensive approach to feedback control of membrane displacement in radio frequency microelectromechanical switches", Sensors Actuators A: Phys., 221, 123-130. https://doi.org/10.1016/j.sna.2014.11.004
  19. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathe. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  20. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Mathe. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
  21. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
  22. Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Mathe. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
  23. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Mathe. Model., 40(5), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
  24. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018a), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0
  25. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
  26. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018c), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
  27. Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136
  28. Eltaher, M.A., Almalki, T.A., Almitani, K.H. and Ahmed, K.I.E. (2019b), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/JNanoR.57.158
  29. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., Int. J., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
  30. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020b), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488
  31. Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238
  32. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  33. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  34. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  35. Hamed, M., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., Int. J., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
  36. Hashemi, S.H. and Khaniki, H.B. (2018), "Dynamic response of multiple nanobeam system under a moving nanoparticle", Alexandria Eng. J., 57(1), 343-356. https://doi.org/10.1016/j.aej.2016.12.015
  37. Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions", Int. J. Solids Struct., 49(15-16), 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020
  38. Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
  39. Joshi, A.Y., Sharma, S.C. and Harsha, S.P. (2011), "Zeptogram scale mass sensing using single walled carbon nanotube based biosensors", Sensors Actuators A: Phys., 168(2), 275-280. https://doi.org/10.1016/j.sna.2011.04.031
  40. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
  41. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimens. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
  42. Khadem, S.E., Rasekh, M. and Toghraee, A. (2012), "Design and simulation of a carbon nanotube-based adjustable nanoelectromechanical shock switch", Appl. Mathe. Model., 36(6), 2329-2339. https://doi.org/10.1016/j.apm.2011.08.029
  43. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  44. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
  45. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
  46. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
  47. Mohite, S.S., Sonti, V.R. and Pratap, R. (2008), "A compact squeeze-film model including inertia, compressibility, and rarefaction effects for perforated 3-D MEMS structures", J. Microelectromech. Syst., 17(3), 709-723. https://doi.org/10.1109/JMEMS.2008.921675
  48. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
  49. Nagase, T., Kawamura, J., Pahlovy, S.A. and Miyamoto, I. (2010), "Ion beam fabrication of natural single crystal diamond nano-tips for potential use in atomic force microscopy", Microelectron. Eng., 87(5), 1494-1496. https://doi.org/10.1016/j.mee.2009.11.070
  50. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  51. Shao, L. and Palaniapan, M. (2008), "Effect of etch holes on quality factor of bulk-mode micromechanical resonators", Electron. Lett., 44(15), 938-939. https://doi.org/10.1049/el:20081320
  52. Sharma, J.N. and Grover, D. (2011), "Thermoelastic vibrations in micro-/nano-scale beam resonators with voids", J. Sound Vib., 330(12), 2964-2977. https://doi.org/10.1016/j.jsv.2011.01.012
  53. Shen, J.P., Li, C., Fan, X.L. and Jung, C.M. (2017), "Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects", Smart Struct. Syst., Int. J., 19(1), 105-113. https://doi.org/10.12989/sss.2017.19.1.105
  54. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 111041. https://doi.org/10.1016/j.compstruct.2019.111041
  55. Tu, C. and Lee, J.E.Y. (2012), "Increased dissipation from distributed etch holes in a lateral breathing mode silicon micromechanical resonator", Appl. Phys. Lett., 101(2), 023504. https://doi.org/10.1063/1.4733728
  56. Zulkefli, M.A., Mohamed, M.A., Siow, K.S., Majlis, B.Y., Kulothungan, J., Muruganathan, M. and Mizuta, H. (2018), "Stress analysis of perforated graphene nano-electro-mechanical (NEM) contact switches by 3D finite element simulation", Microsyst. Technol., 24(2), 1179-1187. https://doi.org/10.1007/s00542-017-3483-9

Cited by

  1. Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.293
  2. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  3. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583