과제정보
연구 과제 주관 기관 : King Abdulaziz University
This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. (DF-059-135-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.
참고문헌
- Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., Int. J., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
- Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., Int. J., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
- Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
- Baroudi, S., Najar, F. and Jemai, A. (2018), "Static and dynamic analytical coupled field analysis of piezoelectric flexoelectric nanobeams: A strain gradient theory approach", Int. J. Solids Struct., 135, 110-124. https://doi.org/10.1016/j.ijsolstr.2017.11.014
- Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012
- Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
- Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of microcontinuum theories", Int. J. Solids Struct., 41(8), 2085-2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030
- Cortes, C., Osorno, M., Uribe, D., Steeb, H., Ruiz-Salguero, O., Barandiaran, I. and Florez, J. (2019), "Geometry simplification of open-cell porous materials for elastic deformation FEA", Eng. Comput., 35(1), 257-276. https://doi.org/10.1007/s00366-018-0597-3
- El-Sinawi, A.H., Bakri-Kassem, M., Landolsi, T. and Awad, O. (2015), "A novel comprehensive approach to feedback control of membrane displacement in radio frequency microelectromechanical switches", Sensors Actuators A: Phys., 221, 123-130. https://doi.org/10.1016/j.sna.2014.11.004
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathe. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Mathe. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Mathe. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Mathe. Model., 40(5), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018a), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018c), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136
- Eltaher, M.A., Almalki, T.A., Almitani, K.H. and Ahmed, K.I.E. (2019b), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/JNanoR.57.158
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., Int. J., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
- Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020b), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488
- Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
- Hamed, M., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., Int. J., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
- Hashemi, S.H. and Khaniki, H.B. (2018), "Dynamic response of multiple nanobeam system under a moving nanoparticle", Alexandria Eng. J., 57(1), 343-356. https://doi.org/10.1016/j.aej.2016.12.015
- Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions", Int. J. Solids Struct., 49(15-16), 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
- Joshi, A.Y., Sharma, S.C. and Harsha, S.P. (2011), "Zeptogram scale mass sensing using single walled carbon nanotube based biosensors", Sensors Actuators A: Phys., 168(2), 275-280. https://doi.org/10.1016/j.sna.2011.04.031
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimens. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
- Khadem, S.E., Rasekh, M. and Toghraee, A. (2012), "Design and simulation of a carbon nanotube-based adjustable nanoelectromechanical shock switch", Appl. Mathe. Model., 36(6), 2329-2339. https://doi.org/10.1016/j.apm.2011.08.029
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
- Mohite, S.S., Sonti, V.R. and Pratap, R. (2008), "A compact squeeze-film model including inertia, compressibility, and rarefaction effects for perforated 3-D MEMS structures", J. Microelectromech. Syst., 17(3), 709-723. https://doi.org/10.1109/JMEMS.2008.921675
- Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
- Nagase, T., Kawamura, J., Pahlovy, S.A. and Miyamoto, I. (2010), "Ion beam fabrication of natural single crystal diamond nano-tips for potential use in atomic force microscopy", Microelectron. Eng., 87(5), 1494-1496. https://doi.org/10.1016/j.mee.2009.11.070
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Shao, L. and Palaniapan, M. (2008), "Effect of etch holes on quality factor of bulk-mode micromechanical resonators", Electron. Lett., 44(15), 938-939. https://doi.org/10.1049/el:20081320
- Sharma, J.N. and Grover, D. (2011), "Thermoelastic vibrations in micro-/nano-scale beam resonators with voids", J. Sound Vib., 330(12), 2964-2977. https://doi.org/10.1016/j.jsv.2011.01.012
- Shen, J.P., Li, C., Fan, X.L. and Jung, C.M. (2017), "Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects", Smart Struct. Syst., Int. J., 19(1), 105-113. https://doi.org/10.12989/sss.2017.19.1.105
- Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 111041. https://doi.org/10.1016/j.compstruct.2019.111041
- Tu, C. and Lee, J.E.Y. (2012), "Increased dissipation from distributed etch holes in a lateral breathing mode silicon micromechanical resonator", Appl. Phys. Lett., 101(2), 023504. https://doi.org/10.1063/1.4733728
- Zulkefli, M.A., Mohamed, M.A., Siow, K.S., Majlis, B.Y., Kulothungan, J., Muruganathan, M. and Mizuta, H. (2018), "Stress analysis of perforated graphene nano-electro-mechanical (NEM) contact switches by 3D finite element simulation", Microsyst. Technol., 24(2), 1179-1187. https://doi.org/10.1007/s00542-017-3483-9
피인용 문헌
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.293
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583