DOI QR코드

DOI QR Code

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2019.06.06
  • 심사 : 2019.10.25
  • 발행 : 2020.04.25

초록

Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

키워드

참고문헌

  1. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Cont., 59(1), 345-359.
  2. Arefi, M. (2018a), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
  3. Arefi, M. (2018b), "Analysis of a doubly curved piezoelectric nano shell: nonlocal electro-elastic bending solution", Eur. J. Mech.-A/Solids., 70, 226-237. https://doi.org/10.1016/j.euromechsol.2018.02.012
  4. Arefi, M. and Zenkour, A.M. (2017a), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
  5. Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezomagnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
  6. Arefi, M. and Zenkour, A.M. (2017c), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  7. Arefi, M. and Zenkour, A.M. (2019a), "Influence of magnetoelectric environments on size-dependent bending results of threelayer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., 21(8), 2751-2778. https://doi.org/10.1177/1099636217723186
  8. Arefi, M. and Zenkour, A.M. (2019b), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
  9. Arefi, M., Zamani, M.H. and Kiani, M. (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
  10. Chandrashekhara, K. (1989), "Free vibrations of anisotropic laminated doubly curved shells", Comput. Struct., 33(2), 435-440. https://doi.org/10.1016/0045-7949(89)90015-1
  11. Chen, D., Yang, J. and Kitipornchai, S. (2017a), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Tech., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008
  12. Chen, C.S., Liu, F.H. and Chen, W.R. (2017b), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., Int. J., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
  13. Fan, J. and Zhang, J. (1992), "Analytical solutions for thick, doubly curved, laminated shells", J. Eng. Mech., 118(7), 1338-1356. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1338)
  14. Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity", Compos. Part B: Eng., 45(1), 1448-1457. https://doi.org/10.1016/j.compositesb.2012.09.054
  15. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
  16. Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
  17. Kapania, R.K. and Yang, T.Y. (1986), "Formulation of an imperfect quadrilateral doubly curved shell element for postbuckling analysis", AIAA Journal, 24(2), 310-311. https://doi.org/10.2514/3.9261
  18. Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 27-36. https://doi.org/10.12989/sss.2019.23.3.215
  19. Librescu, L. and Chang, M.Y. (1993), "Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels", Acta Mech., 96, 203-224. https://doi.org/10.1007/BF01340710
  20. Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta. Mech., 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
  21. Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73(1), 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013
  22. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua, 59(1), 31-55.https://doi.org/10.32604/cmc.2019.04567
  23. Sharma, A., Upadhyay, A.K. and Shukla, K.K. (2013), "Flexural response of doubly curved laminated composite shells", Sci. China Phys. Mech. Astr., 56(4), 812-817. https://doi.org/10.1007/s11433-013-5020-x
  24. Shen, H-S. (2002), "Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments", Compos. Sci. Tech., 62, 977-987. https://doi.org/10.1016/S0266-3538(02)00029-5
  25. Shooshtari, A. and Razavi, S. (2015), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doublycurved shell on elastic foundation", Compos. Part B: Eng., 78(1), 95-108. https://doi.org/10.1016/j.compositesb.2015.03.070
  26. Thakur, S.N., Ray, C. and Chakraborty, S. (2017), "A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell", Acta Mech., 228(1), 69-87. https://doi.org/10.1007/s00707-016-1693-3
  27. Veysi, A., Shabani, R. and Rezazadeh, Gh. (2017), "Nonlinear vibrations of micro-doubly curved shallow shells based on the modified couple stress theory", Nonlinear. Dyn., 87(3), 2051-2065. https://doi.org/10.1007/s11071-016-3175-5
  28. Wu, C.P. and Liu, K.Y. (2007), "A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells", Tech Sci Press: Comput. Mater. Continua, 6(3), 177-199.
  29. Yazdi, A.A. (2013), "Applicability of homotopy perturbation method to study the nonlinear vibration of doubly curved crossply shells", Compos. Struct., 96, 526-531. https://doi.org/10.1016/j.compstruct.2012.09.040
  30. Yeh, J-Y. (2014), "Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment", Smart Struct. Syst., Int. J., 13(1), 124-136. https://doi.org/10.12989/sss.2014.13.1.025
  31. Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., Int. J., 4(1), 67-84. https://doi.org/10.12989/sss.2008.4.1.067
  32. Zhang, J., Van Campen, D.H., Zhang, G.Q. and Bouwman, V. (2001), "Dynamic stability of doubly curved orthotropic shallow shells under impact", AIAA Journal, 39(5), 956-961. https://doi.org/10.2514/2.1401

피인용 문헌

  1. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.001