References
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Cont., 59(1), 345-359.
- Arefi, M. (2018a), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
- Arefi, M. (2018b), "Analysis of a doubly curved piezoelectric nano shell: nonlocal electro-elastic bending solution", Eur. J. Mech.-A/Solids., 70, 226-237. https://doi.org/10.1016/j.euromechsol.2018.02.012
- Arefi, M. and Zenkour, A.M. (2017a), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezomagnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
- Arefi, M. and Zenkour, A.M. (2017c), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
- Arefi, M. and Zenkour, A.M. (2019a), "Influence of magnetoelectric environments on size-dependent bending results of threelayer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., 21(8), 2751-2778. https://doi.org/10.1177/1099636217723186
- Arefi, M. and Zenkour, A.M. (2019b), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
- Arefi, M., Zamani, M.H. and Kiani, M. (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
- Chandrashekhara, K. (1989), "Free vibrations of anisotropic laminated doubly curved shells", Comput. Struct., 33(2), 435-440. https://doi.org/10.1016/0045-7949(89)90015-1
- Chen, D., Yang, J. and Kitipornchai, S. (2017a), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Tech., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017b), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., Int. J., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
- Fan, J. and Zhang, J. (1992), "Analytical solutions for thick, doubly curved, laminated shells", J. Eng. Mech., 118(7), 1338-1356. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1338)
- Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity", Compos. Part B: Eng., 45(1), 1448-1457. https://doi.org/10.1016/j.compositesb.2012.09.054
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
- Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
- Kapania, R.K. and Yang, T.Y. (1986), "Formulation of an imperfect quadrilateral doubly curved shell element for postbuckling analysis", AIAA Journal, 24(2), 310-311. https://doi.org/10.2514/3.9261
- Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 27-36. https://doi.org/10.12989/sss.2019.23.3.215
- Librescu, L. and Chang, M.Y. (1993), "Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels", Acta Mech., 96, 203-224. https://doi.org/10.1007/BF01340710
- Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta. Mech., 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
- Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73(1), 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013
- Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua, 59(1), 31-55.https://doi.org/10.32604/cmc.2019.04567
- Sharma, A., Upadhyay, A.K. and Shukla, K.K. (2013), "Flexural response of doubly curved laminated composite shells", Sci. China Phys. Mech. Astr., 56(4), 812-817. https://doi.org/10.1007/s11433-013-5020-x
- Shen, H-S. (2002), "Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments", Compos. Sci. Tech., 62, 977-987. https://doi.org/10.1016/S0266-3538(02)00029-5
- Shooshtari, A. and Razavi, S. (2015), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doublycurved shell on elastic foundation", Compos. Part B: Eng., 78(1), 95-108. https://doi.org/10.1016/j.compositesb.2015.03.070
- Thakur, S.N., Ray, C. and Chakraborty, S. (2017), "A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell", Acta Mech., 228(1), 69-87. https://doi.org/10.1007/s00707-016-1693-3
- Veysi, A., Shabani, R. and Rezazadeh, Gh. (2017), "Nonlinear vibrations of micro-doubly curved shallow shells based on the modified couple stress theory", Nonlinear. Dyn., 87(3), 2051-2065. https://doi.org/10.1007/s11071-016-3175-5
- Wu, C.P. and Liu, K.Y. (2007), "A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells", Tech Sci Press: Comput. Mater. Continua, 6(3), 177-199.
- Yazdi, A.A. (2013), "Applicability of homotopy perturbation method to study the nonlinear vibration of doubly curved crossply shells", Compos. Struct., 96, 526-531. https://doi.org/10.1016/j.compstruct.2012.09.040
- Yeh, J-Y. (2014), "Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment", Smart Struct. Syst., Int. J., 13(1), 124-136. https://doi.org/10.12989/sss.2014.13.1.025
- Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., Int. J., 4(1), 67-84. https://doi.org/10.12989/sss.2008.4.1.067
- Zhang, J., Van Campen, D.H., Zhang, G.Q. and Bouwman, V. (2001), "Dynamic stability of doubly curved orthotropic shallow shells under impact", AIAA Journal, 39(5), 956-961. https://doi.org/10.2514/2.1401
Cited by
- Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.001