DOI QR코드

DOI QR Code

Cracked rotor diagnosis by means of frequency spectrum and artificial neural networks

  • Munoz-Abella, B. (Department of Mechanical Engineering, University Carlos III of Madrid) ;
  • Ruiz-Fuentes, A. (Department of Mechanical Engineering, University Carlos III of Madrid) ;
  • Rubio, P. (Department of Mechanical Engineering, University Carlos III of Madrid) ;
  • Montero, L. (Department of Mechanical Engineering, University Carlos III of Madrid) ;
  • Rubio, L. (Department of Mechanical Engineering, University Carlos III of Madrid)
  • Received : 2019.05.23
  • Accepted : 2019.08.12
  • Published : 2020.04.25

Abstract

The presence of cracks in mechanical components is a very important problem that, if it is not detected on time, can lead to high economic costs and serious personal injuries. This work presents a methodology focused on identifying cracks in unbalanced rotors, which are some of the most frequent mechanical elements in industry. The proposed method is based on Artificial Neural Networks that give a solution to the presented inverse problem. They allow to estimate unknown crack parameters, specifically, the crack depth and the eccentricity angle, depending on the dynamic behavior of the rotor. The necessary data to train the developed Artificial Neural Network have been obtained from the frequency spectrum of the displacements of the well- known cracked Jeffcott rotor model, which takes into account the crack breathing mechanism during a shaft rotation. The proposed method is applicable to any rotating machine and it could contribute to establish adequate maintenance plans.

Keywords

Acknowledgement

Supported by : Spanish Ministerio de Economia y Competitividad

The authors would like to thank the Spanish Ministerio de Economiay Competitividad for the support for this work through the projects DPI2009-13264 and DPI2013-45406-P.

References

  1. Abarici, H. and Bilgin, O. (2009), "Neural network classification and diagnosis of broken rotor bar faults by means of short time Fourier transform", Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, October.
  2. Adewusi, S.A. and Al-Bedoor, B.O. (2002), "Detection of propagating cracks in rotors using neural networks", Proceedings of the Pressure Vessels and Piping Conference, Vancouver, Canada, August.
  3. Al-Shudeifat, M.A. and Butcher, E.A. (2010), "On the modeling of open and breathing cracks of a cracked rotor system", Proceedings of the Special Conference on Mechanical Vibration and Noise, Montreal, Canada, August.
  4. Al-Shudeifat, M.A. and Butcher, E.A. (2011), "New breathing functions for the transverse breathing crack of the cracked rotor systems: approach for critical and subcritical harmonic analysis", J. Sound Vibr., 330, 526-544. https://doi.org/10.1016/j.jsv.2010.08.022
  5. Ansari, A.I., Chauhan, S.J. and Khaire, P. (2017), "Effect of crack on natural frequency in rotor system", AIP Conference Proceedings, 1859, 020101. https://doi.org/10.1063/1.4990254
  6. Babu, T.R., Srikanth, S. and Sekhar, A.S. (2008), "Hilbert Huang transform for detection and monitoring of crack in a transient rotor", Mech. Syst. Signal Pr., 22, 905-914. https://doi.org/10.1016/j.ymssp.2007.10.010
  7. Cavalini, A.A. Jr., Sanches, L., Bachschmid, N. and Steffen, V. Jr. (2016), "Crack identification for rotating machines based on a nonlinear approach", Mech. Syst. Signal Pr., 79, 72-85. https://doi.org/10.1016/j.ymssp.2016.02.041
  8. Chan, R.K.C. and Lai, T.C. (1995), "Digital simulation of a rotating shaft with a transverse crack", Appl. Math. Model, 19, 411-420. https://doi.org/10.1016/0307-904X(95)00014-B
  9. Chandra, N.H. and Sekhar, A.S. (2016), "Fault detection in rotor bearing systems using time frequency techniques", Mech. Syst. Signal Pr., 72-73, 105-133. https://doi.org/10.1016/j.ymssp.2015.11.013
  10. Civera, M., Zanotti Fragonara, L. and Surace, C. (2017), "A novel approach to damage localization based on bispectral analysis and neural network", Smart Struct. Syst., Int. J., 20(6), 669-682. https://doi.org/10.12989/sss.2017.20.6.669
  11. Darpe, A.K., Gupta, K. and Chawla, A. (2004), "Transient response and breathing behaviour of a cracked Jeffcott Rotor", J. Sound Vib., 272, 207-243. https://doi.org/10.1016/S0022-460X(03)00327-4
  12. Dimarogonas, A.D. (1992), "A brief story of rotor dynamics", Proceedings of the International Conference on Rotating Machine Dynamics, Venice, Italy, April.
  13. Dong, G., Chen, J. and Zou, J. (2004), "Parameter identification of a rotor with an open crack", Eur. J. Mech. A-Solid, 23, 325-333. https://doi.org/10.1016/j.euromechsol.2003.11.003
  14. Dong, H.B., Chen, X.F., Li, B. Qi, K.Y. and He, Z.J. (2009), "Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model", Mech. Syst. Signal Pr., 23, 869-883. https://doi.org/10.1016/j.ymssp.2008.08.003
  15. El Arem, S. and Zid, M.B. (2017), "On a systematic approach for cracked rotating shaft study: breathing mechanism, dynamics and instability", Nonlinear Dyn., 88, 2123-2138. https://doi.org/10.1007/s11071-017-3367-7
  16. Gasch, R. (2008), "Dynamic behaviour of the Laval rotor with a transverse crack", Mech. Syst. Signal Pr., 22, 790-804. https://doi.org/10.1016/j.ymssp.2007.11.023
  17. Genta, G. (2005), Dynamics of rotating systems, Springer, New York, NY, USA.
  18. Gomez-Mancilla, J., Sinou, J.J., Nosov, V.R., Thouverez, F. and Zambrano, A.R. (2004), "The influence of crack-imbalance orientation and orbital evolution for an extended cracked Jeffcott Rotor", Comptes Rendus Mecanique, 332(12), 955-962. https://doi.org/10.1016/j.crme.2004.09.007
  19. Guo, C., Al-Shudeifat, M.A., Yan J., Bergman, L.A., McFarland, D.M. and Butcher, E.A. (2013), "Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack", J. Sound Vibr., 332, 3881-3892. https://doi.org/10.1016/j.jsv.2013.02.031
  20. Guo, C., Yan, J. and Yang, W. (2017), "Crack detection for a Jeffcott Rotor with a transverse crack: An experimental investigation", Mech. Syst. Signal Pr., 83, 260-271. https://doi.org/10.1016/j.ymssp.2016.06.011
  21. Hakim, S.J.S. and Abdul Razak, H. (2014), "Modal parameters based structural damage detection using artificial neural networks - A review", Smart Struct. Syst., Int. J., 14(2), 159-189. http://dx.doi.org/10.12989/sss.2014.14.2.159
  22. Haykin, S. (1998), Neural Networks: A Comprehensive Foundation, (2nd edition), Pearson Education Inc., Singapore.
  23. Jun, O.S., Eun, H.J., Earmme, Y.Y. and Lee, C.W. (1992), "Modelling and vibration analysis of a simple rotor with breathing crack", J. Sound Vibr., 155, 273-290. https://doi.org/10.1016/0022-460X(92)90511-U
  24. Kekan, A.H. and Kumar, B.R. (2019), "Crack depth and crack location identification using artificial neural network", Int. J. Mech. Product. Eng. Res. Develop., 9(2), 699-708. https://doi.org/10.1016/0022-460X(92)90511-U
  25. Kumar, C. and Rastogi, V. (2009), "A brief review on dynamics of a cracked rotor", Int. J. Rotating Mach., 750108. http://dx.doi.org/10.1155/2009/758108.
  26. Kumar, V.S., Nagaraju, C.H. and Venkatrao, K. (2018), "Modeling and characterization of crack depth on rotor bearing using artificial neural networks", Int. J. Mech. Eng. Technol., 9(3), 813-827.
  27. Liang, Y., Feng, Q., Li, H. and Jiang, J. (2019), "Damage detection of shear buildings using frequency-change-ratio and model updating algorithm", Smart Struct. Syst., Int. J., 23(2), 107-122. https://doi.org/10.12989/sss.2019.23.2.107
  28. Liu, S.W., Huang, J.H., Sung, J.C. and Lee, C.C. (2002), "Detection of cracks using neural networks and computational mechanics", Comput. Methods Appl. Mech. Eng., 191, 2831-2845. https://doi.org/10.1016/S0045-7825(02)00221-9
  29. Matlab (2002), MATLABTM, Neural network toolbox users guide.
  30. Mobarak, H.M., Wu, H., Spagnol, J.P. and Xiao, K. (2002), "New crack breathing mechanism under the influence of unbalance force", Arch. Appl. Mech., 88, 341-372. https://doi.org/10.1007/s00419-017-1312-3
  31. Mogal, S.P. and Lalwani, D.I. (2014), "A brief review on fault diagnosis of rotating machineries", Appl. Mech. Mater., 541, 635-640. https://doi.org/10.4028/www.scientific.net/AMM.541-542.635
  32. Mohammed, A.A., Neilsom, R.D., Deans, W.F. and MacConnell, P. (2014), "Crack detection in a rotating shaft using artificial neural networks and PSD characterisation", Meccanica, 49, 255-266. https://doi.org/10.1007/s11012-013-9790-z
  33. Muller, P.C., Bajkowski, J. and Soffker, D. (1994), "Chaotic motions and fault detection in a cracked rotor", Nonlinear Dyn., 5, 233-254. https://doi.org/10.1007/BF00045678
  34. Munoz-Abella, B., Rubio, L. and Rubio, P. (2015), "Stress intensity factor estimation for unbalanced rotating cracked shafts by artificial neural networks", Fatigue Fract. Eng. Mater. Struct., 38(3), 352-367. https://doi.org/10.1111/ffe.12237
  35. Nelson, H.D. (1998), "Rotordynamic modeling and analysis procedures: a review", JSME Int. J. C-Mech. Sy., 41(1), 1-12. https://doi.org/10.1299/jsmec.41.1
  36. Papadopoulos, C.A. (2004), "Some comments on the calculation of the local flexibility of cracked shafts", J. Sound Vib., 278, 1205-1211. https://doi.org/10.1016/j.jsv.2003.12.023
  37. Papadopoulos, C.A. (2008), "The strain energy release approach for modeling cracks in rotors: A state of the art review", Mech. Syst. Signal Pr., 22, 763-789. https://doi.org/10.1016/j.ymssp.2007.11.009
  38. Papadopoulos, C.A. and Dimarogonas, A.D. (1987), "Coupled longitudinal and bending vibrations of a rotating shaft with an open crack", J. Sound Vibr., 117, 81-93. https://doi.org/10.1016/0022-460X(87)90437-8
  39. Park, S., Jeong, H., Min, H. Lee, H. and Lee, S. (2018), "Waveletlike convolutional neural network structure for time-series data classification", Smart Struct. Syst., Int. J., 22(2), 175-183. https://doi.org/10.12989/sss.2018.22.2.175
  40. Patel, T.H. and Darpe, A. (2008), "Influence of crack breathing model on nonlinear dynamics of a cracked rotor", J. Sound Vib., 311, 953-972. https://doi.org/10.1016/j.jsv.2007.09.033
  41. Pu, Y., Chen, J., Zou, J. and Zhong, P. (2002), "Quasi-periodic vibration of cracked rotor on flexible bearings", J. Sound Vib., 251, 875-890. https://doi.org/10.1006/jsvi.2001.4018
  42. Qin, W.Y., Meng, G. and Zhang, T. (2003), "The swing vibration, transverse oscillation of cracked rotor and the intermittence chaos", J. Sound Vib., 259, 571-583. https://doi.org/10.1006/jsvi.2002.5095
  43. Rubio, L. and Fernandez Saez, J. (2012), "A new efficient procedure to solve nonlinear dynamics of a cracked rotor", Nonlinear Dyn., 70, 1731-1745. https://doi.org/10.1007/s11071-012-0569-x
  44. Rubio, P., Munoz-Abella, B. and Rubio, L. (2018), "Neural approach to estimate the stress intensity factor of semi-elliptical cracks in rotating cracked shafts in bending", Fatigue Fract. Eng. Mater. Struct., 41(3), 539-550. https://doi.org/10.1111/ffe.12717
  45. Sabnavis, G., Kirk, R.G., Kasarda, M. and Quinn, D. (2004), "Cracked shaft detection and diagnostics: a literature review", Shock Vib. Digest, 36(4), 287-296. https://doi.org/10.1177/0583102404045439
  46. Sampaio, D.L. and Nicoletti, R. (2016), "Detection of cracks in shafts with the approximated entropy algorithm", Mech. Syst. Signal Pr., 72-73, 286-302. https://doi.org/10.1016/j.ymssp.2015.10.026
  47. Sekhar, A.S. (2004), "Model-based identification of two cracks in a rotor system", Mech. Syst. Signal Pr., 18, 977-983. https://doi.org/10.1016/S0888-3270(03)00041-4
  48. Shanker, M., Hu, M.Y. and Hung, M.S. (1996), "Effect of Data Standardization of Neural Network Training", Omega, 24(4), 385-397. https://doi.org/10.1016/0305-0483(96)00010-2
  49. Sinou, J.J. (2008), "Detection of cracks in rotor based on the 2X and 3X super-harmonic frequency components and the crackunbalance interaction", Commun. Nonlinear Sci. Numer. Simul., 13, 2024-2040. https://doi.org/ 10.1016/j.cnsns.2007.04.008
  50. Sinou, J.J. and Lees, A.W. (2005), "The influence of cracks in rotating shafts", J. Sound Vib., 285, 1015-1037. https://doi.org/10.1016/j.jsv.2004.09.008
  51. Sinou, J.J. and Lees, A.W. (2007), "A non-linear study of a cracked rotor", Eur. J. Mech. A-Solid, 26(1), 152-170. https://doi.org/10.1016/j.euromechsol.2006.04.002
  52. Soffker, D., Wei, C., Wolff, S. and Saadawia, M.S. (2016), "Detection of rotor cracks: comparison of an old model-based approach with a new signal-based approach", Nonlinear Dyn., 83, 1153-1170. https://doi.org/10.1007/s11071-015-2394-5
  53. Spagnol, J.P., Wu, H. and Yang, C. (2018), "Vibration Analysis of a Cracked Rotor with an Unbalance Influenced Breathing Mechanism", Int. J. Mech. Eng. Robot., 7(1), 22-29. https://doi.org/10.18178/ijmerr.7.1.22-29
  54. Varney, P. and Green, I. (2013), "Rotordynamic crack diagnosis: Distinguishing crack depth and location", J. Eng. Gas Turbine Power, 135(11), 112101. https://doi.org/10.1115/1.4025039
  55. Walker, R., Perinpanayagam, S. and Jennions, I.K. (2013), "Rotordynamic faults: recent advances in diagnosis and prognosis", Int. J. Rotating Mach., 856865. hrttp://dx.doi.org/10.1155/2013/856865
  56. Wang, H. and Chen, P. (2009), "Intelligent diagnosis method for a centrifugal pump using features of vibration signals", Neural Comput. Appl., 18, 397-405. https://doi.org/10.1007/s00521-008-0192-4
  57. Xiang, J., Zhong, Y., Chen, X. and He, Z. (2008), "Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm", Int. J. Solids Struct., 45, 4792-4795. https://doi.org/10.1016/j.ijsolstr.2008.04.014
  58. Xu, Y., Chen, D.-M, Zhu, W., Li, G. and Chattopadhyay, A. (2019), "Delamination identification of laminated composite plates using measured mode shapes", Smart Struct. Syst., Int. J., 23(2), 195-205. https://doi.org/10.12989/sss.2019.23.2.195
  59. Zapico-Valle, J.L., Rodriguez, E., Garcia-Dieguez, M. and Cortizo, J.L. (2014), "Rotor crack identification based on neural networks and modal data", Meccanica, 49, 305-324. https://doi.org/10.1007/s11012-013-9795-7
  60. Zhang, C.L., Li, B. and Yang, Z.B. (2013), "Crack location identification of rotating rotor systems using operating deflection shape data", Sci. China Tech. Sci., 56, 1723-1732. https://doi.org/10.1007/s11431-013-5243-0