DOI QR코드

DOI QR Code

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim (AI LAB, Faculty of Information Technology, Ton Duc Thang University) ;
  • Lohnash, Megan (Data Analysis Research Centre, San Jose State University) ;
  • Owens, Emmanuel (Innovative Information Centre, Liverpool John Moores University) ;
  • Chen, C.Y.J. (Faculty of Engineering, King Abdulaziz University)
  • Received : 2019.04.14
  • Accepted : 2019.09.02
  • Published : 2020.04.25

Abstract

This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Keywords

References

  1. Chang, J.-F., Tsai, P.-W., Chen, J.-F. and Hsiao, C.-T. (2014a), "The comparison between IABC with EGARCH in foreign exchange rate forecasting", Proceedings of the 1st Euro-China Conference on Intelligent Data Analysis and Applications, Shenzhen, China, June. https://doi.org/10.1007/978-3-319-07773-4_13
  2. Chang, J.-F., Yang, T.-W. and Tsai, P.-W. (2014b), "Stock portfolio construction using evolved bat algorithm", Proceedings of the 27th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, Kaohsiung, Taiwan, June. https://doi.org/10.1007/978-3-319-07455-9_35
  3. Chu, S.-C. and Tsai, P.-W. (2007), "Computational Intelligence based on behaviors of cats", Int. J. Innov. Comput. Inform. Control, 3(1), 163-173.
  4. Chu, S.-C., Tsai, P.-W. and Pan, J.-S. (2006), "Cat swarm optimization", Proceedings of Trends in Artificial Intelligence, 9th Pacific Rim International Conference on Artificial Intelligence, pp. 854-858, Guilin, China. https://doi.org/10.1007/978-3-540-36668-3_94
  5. Egresits, C., Monostori, L. and Hornyak, J. (1998), "Multistrategy learning approaches to generate and tune fuzzy control structures and their application in manufacturing", J. Intel. Manuf., 9, 323-329. https://doi.org/10.1023/A:1008922709029
  6. Hammami, M.A. (2001), "Global convergence of a control system by means of an observer", J. Optim. Theory Appl., 108, 377-388. https://doi.org/10.1023/A:1026442402201
  7. Hu, Q. (2008), "Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics", Nonlinear Dyn., 52, 227-248. https://doi.org/10.1007/s11071-007-9274-6
  8. Jankovic, M., Sepulchre, R. and Kokotovic, P.V. (1996), "Constructive Lyapunov stabilisation of nonlinear cascade systems", IEEE Trans. Autom. Control, 41, 1723-1735. https://doi.org/10.1109/9.545712
  9. Jeong, S., Lee, J., Cho, S. and Sim, S.H. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695
  10. Kawamoto, S., Tada, K., Ishigame, A. and Taniguchi, T. (1992a), "An approach to stability analysis of second order fuzzy systems", Proceedings of IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, pp. 1427-1434. https://doi.org/10.1109/FUZZY.1992.258713
  11. Kawamoto, S., Tada, K., Onoe, N., Ishigame, A. and Taniguchi, T. (1992b), "Construction of exact fuzzy system for nonlinear system and its stability analysis", Proceedings of 8th Fuzzy System Symposium, Hiroshima, Japan, pp. 517-520.
  12. Lam, H.K. (2009), "Stability analysis of T-S fuzzy control systems using parameter-dependent Lyapunov function", IET Control Theory Appl., 3, 750-762. https://doi.org/10.1049/iet-cta.2008.0196
  13. Lee, H.H. and Juang, H.H. (2012), "Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD", Smart Struct. Syst., Int. J., 9(1), 71-104. https://doi.org/10.12989/sss.2012.9.1.071
  14. Lee, H.J., Park, J.B. and Chen, G. (2001), "Robust fuzzy control of nonlinear systems with parameter uncertainties", IEEE Trans. Fuzzy Syst., 9, 369-379. https://doi.org/10.1109/91.919258
  15. Lian, S.T., Marzuki, K. and Rubiyah, Y. (1998), "Tuning of a neuro-fuzzy controller by genetic algorithms with an application to a coupled-tank liquid-level control system", Eng. Applicat. Artific. Intel., 11, 517-529. https://doi.org/10.1016/S0952-1976(98)00012-8
  16. Liu, Y.-J. and Li, Y.-X. (2010), "Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems", Nonlinear Dyn., 61, 749-761. https://doi.org/10.1007/s11071-010-9684-8
  17. Liu, S.-C. and Lin, S.-F. (2012a), "LMI-based robust adaptive control for mismatched uncertain nonlinear time-delay systems using fuzzy models", Proceedings of 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 552-555. https://doi.org/10.1109/IS3C.2012.145
  18. Liu, S.-C. and Lin, S.-F. (2012b), "LMI-based robust sliding control for mismatched uncertain nonlinear systems using fuzzy models", Int. J. Robust Nonlinear Control, 22(16), 1827-1836. https://doi.org/10.1002/rnc.1789
  19. Liu, S.-C. and Lin, S.-F. (2013), "Robust sliding control for mismatched uncertain fuzzy time-delay systems using linear matrix inequality approach", J. Chinese Inst. Engr., 36(5), 589-597. https://doi.org/10.1080/02533839.2012.734557
  20. Liu, X. and Zhang, Q. (2003), "New approach to $H_{\infty}$ controller designs based on fuzzy observers for T-S fuzzy systems via LMI", Automatica, 39, 1571-1582. https://doi.org/10.1016/S0005-1098(03)00172-9
  21. Loria, A. and Nesic, D. (2003), "On uniform boundedness of parametrized discrete-time systems with decaying inputs: applications to cascades", Syst. Control Lett., 94, 163-174. https://doi.org/10.1016/S0167-6911(02)00319-5
  22. Ma, X.J. and Sun, Z.Q. (2001), "Analysis and design of fuzzy reduced-dimensional observer and fuzzy functional observer", Fuzzy Sets Syst., 120, 35-63. https://doi.org/10.1016/S0165-0114(99)00145-1
  23. Mossaheb, S. (1983), "Application of a method of averaging to the study of dithers in nonlinear systems", Int. J. Control, 38, 557-576. https://doi.org/10.1080/00207178308933094
  24. Narendra, K.G., Khorasani, K.K., Sood, V.K. and Patel, R.V. (1998), "Intelligent current controller for an HVDC transmission link", IEEE Transact. Power Syst., 13, 1076-1083. https://doi.org/10.1109/59.709102
  25. Panda, G., Pardhan, P.M. and Majhi, B. (2011), "IIR system identification using cat swarm optimization", Expert Syst. Applicat., 38, 12671-12683. https://doi.org/10.1016/j.eswa.2011.04.054
  26. Panteley, E. and Loria, A. (1998), "On global uniform asymptotic stability of nonlinear time-varying non autonomous systems in cascade", Syst. Control Lett., 33, 131-138. https://doi.org/10.1016/S0167-6911(97)00119-9
  27. Pardhan, P.M. and Panda, G. (2012), "Solving multiobjective problems using cat swarm optimization", Expert Syst. Applicat., 39, 2956-2964. https://doi.org/10.1016/j.eswa.2011.08.157
  28. Park, J., Kim, J. and Park, D. (2003), "LMI-based design of stabilizing fuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model", Fuzzy Sets Syst., 122, 73-82. https://doi.org/10.1016/S0165-0114(00)00050-6
  29. Ravikumar, P., Lafferty, J., Liu, H. and Wasserman, L. (2009), "Sparse additive models", J. Royal Statist. Soc. Series B: Statist. Methodol., 71(5), 1009-1030. https://doi.org/10.1111/j.1467-9868.2009.00718.x
  30. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., Int. J., 23(5), 467-478. https://doi.org/10.12989/sss.2019.23.5.467
  31. Seibert, P. and Suarez, R. (1990), "Global stabilisation of nonlinear cascade systems", Syst. Control Lett., 14, 347-352. https://doi.org/10.1016/0167-6911(90)90056-Z
  32. Sepulchre, R. (2000), "Slow peaking and low-gain designs for global stabilisation on nonlinear systems", IEEE Trans. Autom. Control, 45, 453-461. https://doi.org/10.1109/9.847724
  33. Sepulchre, R., Jankovic, M. and Kokotovic, P.V. (1997), Constructive Nonlinear Control. Series in Communications and Control Engineering, Springer, Berlinm, Germany.
  34. Sontag, E.D. (1988), "Smooth stabilization implies coprime factorization", IEEE Trans. Automat. Control, 34, 435-443. https://doi.org/10.1109/9.28018
  35. Sontag, E.D. (1989), "Remarks on stabilisation and input-to-state stability", Proceedings of the 28th IEEE Conference on Decision Control, Tampa, FL, USA, pp. 1376-1378.
  36. Sontag, E.D. and Wang, Y. (1995), "On characterizations of the input-to-state stability property", Syst. Control Lett., 24, 351-359. https://doi.org/10.1016/0167-6911(94)00050-6
  37. Steinberg, A.M. and Kadushin, I. (1973), "Stabilization of nonlinear systems with dither control", J. Math. Anal. Applicat., 43, 273-284. https://doi.org/10.1016/0022-247X(73)90275-8
  38. Sun, Q., Li, R. and Zhang, P. (2003), "Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model", Fuzzy Sets Syst., 133, 1-17. https://doi.org/10.1016/S0165-0114(02)00124-0
  39. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Trans. Syst. Man Cybern., 15, 116-132. https://doi.org/10.1109/TSMC.1985.6313399
  40. Tanaka, K. and Sano, M. (1994), "A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer", IEEE Trans. Fuzzy Syst., 2, 119-134. https://doi.org/10.1109/91.277961
  41. Tanaka, K., Ikeda, T. and Wang, H.O. (1996), "Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, $H_{\infty}$ control theory, and linear matrix inequalities", IEEE Trans. Fuzzy Syst., 4, 1-13. https://doi.org/10.1109/91.481840
  42. Tsai, P.-W., Pan, J.-S., Liao, B.-Y., Chu, S.-C. (2009), "Enhanced artificial bee colony optimization", Int. J. Innov. Comput. Inform. Control, 5(12), 5081-5092.
  43. Tsai, P.-W., Kham, M.K., Pan, J.-S. and Liao, B.-Y. (2012), "Interactive artificial bee colony supported passive continuous authentication system", IEEE Syst. J., 1-11.
  44. Tsai, P.-W., Pan, J.-S., Liao, B.-Y., Tsai, M.-J. and Vaci, I. (2012a), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148-149, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134
  45. Wang, H.O., Tanaka, K. and Griffin, M.F. (1996), "An approach to fuzzy control of nonlinear systems: stability and design issues", IEEE Trans. Fuzzy Syst., 4, 14-23. https://doi.org/10.1109/91.481841
  46. Wang, Z.-H., Chang, C.-C. and Li, M.-C. (2012), "Optimizing least-significant-bit substitution using cat swarm optimization strategy", Inform. Sci., 192, 98-108. https://doi.org/10.1016/j.ins.2010.07.011
  47. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  48. Zhu, Y., Zhang, Q., Wei, Z. and Zhang, L. (2013), "Robust stability analysis of Markov jump standard genetic regulatory networks with mixed time delays and uncertainties", Neurocomputing, 110(13), 44-50. https://doi.org/10.1016/j.neucom.2012.09.033