과제정보
연구 과제 주관 기관 : Hoseo University
This research was supported by the Academic Research fund of Hoseo University in 2015(2015-0120).
참고문헌
- Ashraf, K., Md Khir, M.H., Dennis, J.O. and Baharudin, Z. (2013), "Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies", Sens. Actuators, A, 195, 123-132. https://doi.org/10.1016/j.sna.2013.03.026
- Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jone P., O'Donnell T., Saha C.R. and Roy S. (2007), "A micro electromagnetic generator for vibration energy harvesting", J. Micromech. Microeng., 17, 1257-1265. https://doi.org/10.1088/0960-1317/17/7/007
- Blanchet, P. (1988), "Linear vibration analysis using screw theory", Ph.D. Dissertation; Georgia Institute of Technology, Atlanta, GA, USA.
- Chen, S.-J. and Wu, J.-Y. (2016), "Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening", Smart Mater. Struct., 25, 095047. https://doi.org/10.1088/0964-1726/25/9/095047
- Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D. and Taroni, A. (2008), "Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems", Sens. Actuators, A, 142, 329-335. https://doi.org/10.1016/j.sna.2007.07.004
- Griffis, M. and Duffy, J. (1991), "Kinestatic control: a novel theory for simultaneously regulating force and displacement", J. Mech. Des., 113, 508-515. https://doi.org/10.1115/1.2912812
- Jang, S.-J., Rustighi, E., Brennan, M.J, Lee, Y.P. and Jung, H.-J. (2010), "Design of a 2DOF vibrational energy harvesting device", J. Intell. Mater. Syst. Struct., 22, 443-448. https://doi.org/10.1177/1045389X10393766
- Kim, I.-H., Jung, H.-J., Lee, B.M. and Jang, S.-J. (2011), "Broadband energy-harvesting using a two degree-of-freedom vibration body", Appl. Phys. Lett., 98, 214102. https://doi.org/10.1063/1.3595278
- Kim, J.-M., Han, M., Lim, H.J., Yang, S. and Sohn, H. (2016), "Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete", Smart Struct. Syst., Int. J., 17(4), 631-646. https://doi.org/10.12989/sss.2016.17.4.631
- Liu, H., Soon, B.W., Wang, N., Tay, C.J., Quan, C. and Lee, C. (2012), "Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes", J. Micromech. Microeng., 22, 125020. https://doi.org/10.1088/0960-1317/22/12/125020
- Makihara, K., Hirai, H. and Yamamoto, Y. (2015), "Self-reliant wireless health monitoring based on tuned-mass-damper mechanism", Smart Struct. Syst., Int. J., 15(6), 1625-1642. https://doi.org/10.12989/sss.2015.15.6.1625
- Marin, A., Turner, J., Ha, D.S. and Priya, S. (2013), "Broadband electromagnetic vibration energy harvesting system for powering wireless sensor nodes", Smart Mater. Struct., 22, 075008. https://doi.org/10.1088/0964-1726/22/7/075008
- Meirovitch, L. (2001), Fundamentals of Vibration, McGraw-Hill Companies, Inc., New York, NY, USA.
- Nammari, A., Caskey, L., Negrete, J. and Bardaweel, H. (2018), "Fabrication and characterization of non-resonant magnetomechanical low-freqeucny vibration energy harvester", Mech. Syst. Sig. Process., 86, 29-39. https://doi.org/10.1016/j.ymssp.2017.09.036
- Nico, V., Boco, E., Frizzell, R. and Punch, J. (2016), "A high figure of merit vibrational energy harvester for low frequency applications", Appl. Phys. Lett., 108, 013902. https://doi.org/10.1063/1.4939545
- Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
- O'Donoghue, D., Frizzell, R. and Punch, J. (2018), "Scaling and characterisation of a 2-DoF velocity amplified electromagnetic vibration energy harvester", Smart Mater. Struct., 27, 075019. https://doi.org/10.1088/1361-665X/aac297
- Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dyn., 59, 545-558. https://doi.org/10.1007/s11071-009-9561-5
- Shahruz, S.M. (2006), "Design of mechanical band-pass filters with large frequency bands for energy scavenging", Mechatronics, 16, 523-531. https://doi.org/10.1016/j.mechatronics.2006.04.003
- Tang, L. and Yang, Y. (2012), "A nonlinear piezoelectric energy harvester with magnetic oscillator", Appl. Phys. Lett., 101, 094102. https://doi.org/10.1063/1.4748794
- Wang, H. and Tang, L. (2017), "Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling", Mech. Syst. Sig. Process, 86, 29-39. https://doi.org/10.1016/j.ymssp.2016.10.001
- Wong, Z.J., Yan, J., Soga, K. and Seshia, A. (2009) "A multidegree-of-freedom electrostatic MEMS power harvester", Power Micro Electro Mechanical Systems, Washington, DC, USA, December.
- Wu, H., Tang, L., Yang, Y. and Soh, C.K. (2014), "Development of a broadband nonlinear two degree-of-freedom piezoelectric energy harvester", J. Intell. Mater. Syst. Struct., 25, 1875-1889. https://doi.org/10.1177/1045389X14541494
- Zhang, Y., Wang, T., Zhang, A., Peng, Z., Luo, D., Chen, R. and Wang, F. (2016), "Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency", Rev. Sci. Instrum., 87, 125001. https://doi.org/10.1063/1.4968811
- Zhu, D., Tudor, M.J. and Beeby, S.P. (2010), "Strategy for increasing the operating frequency range of vibration energy harvesters: a review", Meas. Sci. Technol., 21, 022001. https://doi.org/10.1088/0957-0233/21/2/022001
- Zhu, D., Beeby, S., Tudor, J. and Harris, N. (2012), "Vibration energy harvesting using the Halbach array", Smart Mater. Struct., 21, 075020. https://doi.org/10.1088/0964-1726/21/7/075020