Acknowledgement
The authors would like to thank the Ontario Centres of Excellence, Natural Sciences and Engineering Research Council of Canada, and Schoeck Canada for their financial contributions to this research.
References
- Adam, M.A., Said, M., Mahmoud, A.A. and Shanour, A.S. (2015), "Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars", Constr. Build. Mater., 84, 354-366. https://doi.org/10.1016/j.conbuildmat.2015.03.057.
- Arafa, A., Farghaly, A.S. and Benmokrane, B., (2019), "Nonlinear finite-element analysis for predicting the behavior of concrete squat walls reinforced with GFRP bars", J. Struct. Eng., ASCE, 145(10), 04019107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002399.
- Canadian Standards Association (CSA). (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymers, CAN/CSA S806-12, Mississauga, Ontario.
- CEB-FIP (1993), Model Code 1990 (MC 90), Design Code, Thomas Telford, London.
- Cornelissen, H., Hordijk, D. and Reinhardt, H. (1986), "Experimental determination of crack softening characteristics of normal weight and lightweight concrete", Heron, 32(2), 45-56.
- Dassault Systems Simulia Corp. (DSS) (2012), ABAQUS Analysis User's Manual 6.12, Providence, RI, USA.
- Ferreira, A.J.M., Camanho, P.P., Marques, A.T. and Fernandes, A.A. (2001), "Modelling of concrete beams reinforced with FRP re-bars", Compos. Struct., 53(1), 101-116. https://doi.org/10.1016/S0263-8223(00)00182-3.
- Genikomsou, A. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in Abaqus", Eng. Struct., 98(4), 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
- Hillerborg, A., Modeer, M. and Petersson, P. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- International Federation for Structural Concrete (2008), Constitutive Modelling of High Strength/High Performance Concrete - Bulletin 42, Lausanne, Switzerland.
- International Federation for Structural Concrete (2010), Model Code 2010. First Complete Draft, Version 1, Lausanne, Switzerland.
- International Federation for Structural Concrete (2013), Code-Type Models for Structural Behaviour of Concrete, Lausanne, Switzerland.
- Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model". Found. Civil Environ. Eng., 6(1), 53-69.
- Jumaaa, G.B. and Yousif, A.R. (2019), "Numerical modeling of size effect in shear strength of FRP-reinforced concrete beams", Struct., 20, 237-254. https://doi.org/10.1016/j.istruc.2019.04.008.
- Kaya, M. and Yaman, C. (2018), "Modelling the reinforced concrete beams strengthened with GFRP against shear crack", Comput. Concrete, 21(2), 127-137. https://doi.org/10.12989/cac.2018.21.2.127.
- Krall, M. (2014), "Tests on concrete beams with GFRP flexural and shear reinforcements & analysis method for indeterminate strut-and-tie models with brittle reinforcements", Master's Thesis, University of Waterloo, Canada.
- Kupfer, H., Hilsdorf, H. and Rusch, H. (1969), "Behaviour of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
- Lee, J. and Fenves, G. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Malm, R. (2006), "Shear cracks in concrete structures subjected to in-plane stresses", Thesis, Royal Institute of Technology, Stockholm, Sweden.
- Mohamed, K., Farghaly, A.S., Benmokrane, B. and Neale, K.W. (2017), "Nonlinear finite-element analysis for the behavior prediction and strut efficiency factor of GFRP-reinforced concrete deep beams", Eng. Struct., 137, 145-161. https://doi.org/10.1016/j.engstruct.2017.01.045.
- Nehdi, M., Chabib, H.E. and Said, A.A. (2007), "Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach", J. Mater. Civil Eng., 19(12), 1033-1042. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1033).
- Nour, A., Massicotte, B., Yildiz, E. and Koval, V. (2007), "Finite element modelling of concrete structures reinforced with internal and external fibre-reinforced polymers", Can. J. Civil Eng., 34(3), 340-354. https://doi.org/10.1139/l06-140.
- Petersson, P. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Report TVBM - 1006, Lund Institute of Technology, Lund, Sweden.
- Polling, R. (2001), "Eine Praxisnahe, Schdigungsorientierte Materialbeschreibung von Stahlbeton", Dissertation, Ruhr-Universitt Bochum, Germany.
- Rafi, M.M., Nadjai, A. and Ali, F. (2007), "Analytical modeling of concrete beams reinforced with carbon FRP bars", J. Compos. Mater., 41(22), 2675-2690. https://doi.org/10.1177/0021998307078728.
- Reineck, K., Kuchma, D., Kim, K. and Marx, S. (2003), "Shear data for reinforced concrete members with shear reinforcement", ACI Struct. J., 100(2), 240-249.
- Saleh, Z., Sheikh, M.N., Remennikow, A. and Basu, A. (2019), "Numerical analysis of behavior of glass fiber-reinforced polymer bar-reinforced concrete beams under impact loads", ACI Struct. J., 116(5), 151-160.
- Stoner, J. (2015), "Finite element modelling of GFRP reinforced concrete beams", Master's Thesis, University of Waterloo, Canada.
- Trunk, B. and Wittmann, F. (1998), "Experimental investigation into the size dependence of fracture mechanics parameters", Third International Conference of Fracture Mechanics of Concrete Structures, 3, 1937-1948.
- Yu, T., Teng, J., Wong, Y. and Dong, S. (2010), "Finite element modeling of confined concrete-I: Drucker Prager type plasticity model", Eng. Struct., 32(3), 665-679. https://doi.org/10.1016/j.engstruct.2009.11.014
Cited by
- Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites vol.27, pp.2, 2020, https://doi.org/10.12989/cac.2021.27.2.131