DOI QR코드

DOI QR Code

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bouhadra, Abdelhakim (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Menasria, Abderrahmane (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bourada, Fouad (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Benrahou, Kouider Halim (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • 투고 : 2020.01.06
  • 심사 : 2020.03.14
  • 발행 : 2020.04.25

초록

In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

키워드

참고문헌

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol. Tran. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  2. Abdou, M.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2019), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Indi. J. Phys., 1-12. https://doi.org/10.1007/s12648-019-01505-8.
  3. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
  4. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
  5. Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  6. Akbas, S.D. (2019b), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  7. Akbas, S.D. (2019c), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
  8. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis", Comput. Mater. Sci., 44(3), 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001.
  9. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019) "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maintain., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  10. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  11. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  12. Barati, M.R. and Shahverdi, H. (2019), "Finite element forced vibration analysis of refined shear deformable nanocompositegraphene platelet-reinforced beams", J. Brazil. Soc. Mech. Sci. Eng., 42(1), 33. https://doi.org/10.1007/s40430-019-2118-8.
  13. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  14. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  15. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraf. Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  16. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  17. Beni, N.N. (2019), "Free vibration analysis of annular sector sandwich plates with FG-CNT reinforced composite face-sheets based on the Carrera's Unified Formulation", Compos. Struct., 214, 269-292. https://doi.org/10.1016/j.compstruct.2019.01.094.
  18. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018a), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  19. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  20. Bensattalah, T., Zidour, M. and Hassaine Daouadji, T. (2018b), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  21. Bensattalah, T., Zidour, M., Hassaine Daouadji, T. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  22. Borsellino, C., Calabrese, L. and Valenza, A. (2004), "Experimental and numerical evaluation of sandwich composite structures", Compos. Sci. Technol., 64(10-11), 1709-1715. https://doi.org/10.1016/j.compscitech.2004.01.003.
  23. Burlayenko, V.N. and Sadowski, T. (2019), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 52, 30-43. https://doi.org/10.1007/s11012-019-01001-7.
  24. Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384. https://doi.org/10.1061/(asce)0733-9399(2005)131:4(377).
  25. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  26. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  27. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  28. Ebrahimi, F. and Barati, M.R. (2017b), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Wav. Rand. Complex Media, 28(2), 326-342. https://doi.org/10.1080/17455030.2017.1346331.
  29. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  30. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11, 151-163. https://doi.org/10.1007/s40091-019-0222-8.
  31. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  32. Emdadi, M., Mohammadimehr, M. and Navi, B.N. (2019), "Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  33. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  34. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 1-9. https://doi.org/10.1007/s42417-020-00203-8.
  35. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  36. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 81. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  37. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  38. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179. https://doi.org/10.12989/amr.2019.8.3.179.
  39. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  40. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  41. Heshmati, M. and Jalali, S.K. (2019), "Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates", Eur. J. Mech.-A/Solid., 74, 417-430. https://doi.org/10.1016/j.euromechsol.2018.12.009.
  42. Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2014), "Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory", J. Sandw. Struct. Mater., 16(6), 669-699. https://doi.org/10.1177/1099636214548618.
  43. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/s0263-8223(02)00017-x.
  44. Kiani, Y. and Eslami, M.R. (2011), "Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82(7), 891-905. https://doi.org/10.1007/s00419-011-0599-8.
  45. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  46. Lieu, Q.X., Lee, J., Lee, D., Lee, S., Kim, D. and Lee, J. (2018), "Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm", Thin Wall. Struct., 124, 588-604. https://doi.org/10.1016/j.tws.2017.11.054.
  47. Liu, N. and Jeffers, A.E. (2017), "Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory", Compos. Struct., 176, 143-153. https://doi.org/10.1016/j.compstruct.2017.05.037.
  48. Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
  49. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94-95, 45-53. https://doi.org/10.1016/j.compstruc.2011.12.003.
  50. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
  51. Mirjavadi, S.S., Forsat, M., Nikookar, M. Barati, M.R. and Hamouda, A.M.S. (2019b), "Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets", Eur. Phys. J. Plus, 134, 508. https://doi.org/10.1140/epjp/i2019-12806-8.
  52. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  53. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
  54. Nayak, A.K., Moy, S.S.J. and Shenoi, R.A. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/s1359-8368(02)00035-5.
  55. Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B: Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
  56. Othman, I.A.M. and Mahdy, A.S.M. (2018), "Numerical studies for solving a free convection boundary-layer flow over a vertical plate", Mech. Mech. Eng., 22(1), 35-42.
  57. Othman, M.I.A., Abouelregal, A.E. and Said, S.M. (2019), "The effect of variable thermal conductivity on an infinite fiber-reinforced thick plate under initial stress", J. Mech. Mater. Struct., 14(2), 277-293. https://doi.org/10.2140/jomms.2019.14.277.
  58. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech.-A/Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  59. Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9-10), 602-610. https://doi.org/10.1016/j.finel.2008.02.001.
  60. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340.
  61. Radwan, A.F. (2017), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177/1099636217693557.
  62. Raissi, H., Shishehsaz, M. and Moradi, S. (2018), "Stress distribution in a five-layer sandwich plate with FG face sheets using layerwise method", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2018.1432796.
  63. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/CAC.2019.23.5.361
  64. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.
  65. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  66. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  67. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  68. Sedighi, H.M., Shirazi, K.H. and Attarzadeh, M.A. (2013), "A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches", Acta Astronautica, 91, 245-250. https://doi.org/10.1016/j.actaastro.2013.06.018.
  69. Sedighi, H.M., Shirazi, K.H. and Zare, J. (2012a), "Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He's Parameter Expanding Method", Lat. Am. J. Solid. Struct., 9(4), 443-452. https://doi.org/10.1590/s1679-78252012000400002.
  70. Sedighi, H.M., Shirazi, K.H., Reza, A. and Zare, J. (2012b), "Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 226(10), 2474-2484. https://doi.org/10.1177/0954406211435196.
  71. Singh, S.J. and Harsha, S.P. (2018), "Exact solution for free vibration and buckling of sandwich S-FGM plates on pasternak elastic foundation with various boundary conditions", Int. J. Struct. Stab. Dyn., 19(3), 1950028. https://doi.org/10.1142/s0219455419500287.
  72. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  73. Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. https://doi.org/10.1016/j.compstruc.2014.04.003.
  74. Thai, H.T. and Kim, S.E. (2013), "Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation", Int. J. Mech. Sci., 75, 34-44. https://doi.org/10.1016/j.ijmecsci.2013.06.007.
  75. Tomar, S.S. and Talha, M. (2018), "On the flexural and vibration behavior of imperfection sensitive higher order functionally graded material skew sandwich plates in thermal environment", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 095440621876695. https://doi.org/10.1177/0954406218766959.
  76. Wang, B., Wu, L., Jin, X., Du, S., Sun, Y. and Ma, L. (2010), "Experimental investigation of 3D sandwich structure with core reinforced by composite columns", Mater. Des., 31(1), 158-165. https://doi.org/10.1016/j.matdes.2009.06.039.
  77. Xiang, S., Jin, Y., Bi, Z., Jiang, S. and Yang, M. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022.
  78. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B: Eng., 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.
  79. Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stress., 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356.
  80. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499
  81. Yeh, J.Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22(3), 035010. https://doi.org/10.1088/0964-1726/22/3/035010.
  82. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
  83. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
  84. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.

피인용 문헌

  1. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  2. Analysis of Rotary Vibration of Rigid Friction Pipe Pile in Unsaturated Soil vol.2020, 2020, https://doi.org/10.1155/2020/2807574
  3. Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, 2020, https://doi.org/10.1155/2020/9236538
  4. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  5. Analysis of orthotropic plates by the two-dimensional generalized FIT method vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.421
  6. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.265
  7. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  8. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/6672370
  9. A Nonlocal Strain Gradient Approach for Out-of-Plane Vibration of Axially Moving Functionally Graded Nanoplates in a Hygrothermal Environment vol.2021, 2020, https://doi.org/10.1155/2021/8332125
  10. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
  11. Influences of Two Calculation Methods about Dynamic Tension on Vibration Characteristics of Cable-Bridge Coupling Model vol.2021, 2020, https://doi.org/10.1155/2021/6681954
  12. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.213
  13. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  14. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315
  15. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  16. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  17. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  18. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  19. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  20. A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2020, https://doi.org/10.1108/aeat-01-2021-0012
  21. Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355
  22. Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.115