DOI QR코드

DOI QR Code

An Analysis of Propagation Model in Half-Canyon Structure with Slope using Multi-Ray Model

경사면을 갖는 반-협곡 구조에서 다중-광선 모델을 사용한 전파 모델 해석

  • 이화춘 (조선대학교 전자공학과) ;
  • 최태일 (광주여자대학교 보건행정학과)
  • Received : 2019.12.17
  • Accepted : 2020.02.15
  • Published : 2020.02.29

Abstract

A multi-ray model has been used to interpret radio transmission losses in half-canyon structures with slope and to formulate a multi-ray propagation model depending on the angle of slopes. The cut-off angles for the third and fourth paths, which are the slope-sided reflection paths of the transmission and reception radio waves determined by the inclined angles of the slope, were calculated with the height and location of the transmitter and receiver. To predict transmission losses in an inclined plane environment, the embankment environment where the actual slope exists was modeled and simulated to calculate the loss of propagation transmission, and the radio wave transmission loss was confirmed by the measurement for the frequency band 1 to 6 GHz. Simulation results and measurement results showed similar trends in radio transmission loss, and radio transmission loss predictions and measurement results for various terrain information can be used in the design of radio propagation service.

다중-광선 모델을 이용하여 경사면을 갖는 반-협곡 구조에서 전파 전송 손실을 해석하고 경사면의 각도에 따라 나타나는 다중-광선 전파 모델을 공식화 하였다. 경사면의 기울어진 각도에 의해 결정되는 송수신 전파의 경사면 반사경로인 제3경로와 제4경로에 대한 차단 각도를 송수신 단말의 높이와 위치를 가지고 계산하였다. 경사면 환경에서 전파 전송 손실을 예측하기 위하여 실제 경사면이 존재하는 제방 환경을 선택하여 모델링하고 시뮬레이션 하여 전파 전송 손실을 계산하였으며, 주파수 1-6GHz 대역에 대한 측정활동을 통해 전파전송 손실을 확인하였다. 시뮬레이션 결과와 측정 결과는 유사한 전파 전송 손실 경향을 보여주었으며 다양한 지형정보에 대한 전파 경로 손실 예측과 측정 결과들은 다양한 전파 업무 설계에 활용될 수 있다.

Keywords

References

  1. K. Yoon, "Discrete Ray Tracing Techniques for Wave Propagation Characteristic of Random Rough Surfaces," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 3, 2010, pp. 233-238.
  2. D. Bojanjac, R. Nay, G. Sisul, Ray "Tracing Model of Pedestrian Urban Zone," 52nd International Symposium ELMAR-2010, Zadar, Croatia, Sept. 2010, pp. 289-292(15-17), .
  3. K. Yoon, "Wave Propagation Characteristic from Composite Structures," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 3, 2011, pp. 343-348. https://doi.org/10.13067/JKIECS.2011.6.3.343
  4. L. Denegri, L. Bixio, F. Lavagetto, A. Iscra, and C. Braccini, "An Analytical Model of Microcellular Propagation in Urban Canyons," IEEE 65th Vehicular Technology Conference, 2007, pp. 402-406.
  5. H. Masui, M. Ishii, K. Sakawa, H. Shimizu, T. Kobayashi, and M. Akaike, "Microwave Path-Loss Characteristics in Urban LOS and NLOS Environments," IEEE VTS 53rd Vehicular Technology Conference, 2001, pp. 395-398.
  6. K. Kim and S. Oh, "Geometric Optics-based Propagation Prediction Model in Urban Street Canyon Environments," IEEE Antennas and Wireless Propagation Letters, 2016, pp. 1128-1131.
  7. ITU-R P.1411-8, "Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz," July 2015.
  8. K. Haneda, N. Omaki, T. Imai, L. Raschkowski, M. Peter, and A. Roivainen, "Frequency-Agile Pathloss Models for Urban Street Canyons," IEEE Transactions on Antennas and Propagation, 2016, pp. 1941-1951.
  9. K. Haneda, N. Omaki, T. Imai, L. Raschkowski, M. Peter, and A. Roivainen, "Frequency-Agile Pathloss Models for Urban Street Canyons," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 64, no. 5, May 2016, pp. 1941-1951. https://doi.org/10.1109/TAP.2016.2536170
  10. S. Salous, Radio Propagation Measurement and Channel Modelling. Chichester: , Jon Wiley & Sons Ltd., 2013.
  11. S. Oh, Y. Lee, and H. Lee, "A Study on the Valuation of Radio Waves through a Radio Engineering Approach," Report, Oct. 2015.