DOI QR코드

DOI QR Code

우적 크기 탐지기 신호로 산출한 정량적 운동에너지

Quantitative Kinetic Energy Estimated from Disdrometer Signal

  • 투고 : 2019.12.13
  • 심사 : 2020.02.15
  • 발행 : 2020.02.29

초록

Brazil Alagoas 주의 동부 지역에서 우적 크기를 측정하는 디즈드로미터(disdrometer)로 산출한 강우량과 강우율의 관계로 우적의 역학 에너지가 예측되었다. 강우의 시작과 끝에서 측정되는 약한 강우 강도에서는 지수 형태의 방정식이 큰 우적의 영향을 억제하였다. 빗방울의 역학 에너지는 거의 모든 강우 강도 범위에서 과소평가 되었다. 결정 계수, 평균 절대 오차, 상대 오차 비율, 평균 절대 오차, 평균 제곱 오차, Willmott의 일치 지수 및 신뢰 지수와 같은 성과 지표에 기반을 두어 예측된 강우 역학 에너지가 유용한 결과로 평가되었다.

The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index.

키워드

참고문헌

  1. Ministerio das Cidades, Plano Municipal de Reducao de Risco, Maceio-AL, vol. 1-5, 2007.
  2. CENAD, Levantamento de dados e analise da vulnerabilidade a desastres naturais para elaboracao de mapas de risco e apresentacao de proposta de intervencoes para prevencao de desastres no município de Maceio-AL, Modulo II, Ministerio da Integracao/Centro Nacional de Gerenciamento de Riscos e Desastres, Brasilia, 2014.
  3. A. C. Imeson, "Addressing soil erosion in Europe: proceedings of the SCAPE workshop in Alicante, Spain", Land Degradation and Development, vol. 16, no. 6, 2016, pp. 505-508. https://doi.org/10.1002/ldr.704
  4. EMBRAPA, Boletim de Pesquisa e Desenvolvimento-Climatologia do Estado de Alagoas, ISSN 1678-0892. Recife, 2012.
  5. M. C. da S. Moraes, "Parametros de radar e distribuicao do tamanho de gotas de chuva continental e marinha no leste do nordeste do Brasil: sua influencia na estimativa da vazao na Bacia do Rio Mundau", Doctoral Thesis, Universidade Federal de Campina Grande, 2011.
  6. S. E. Hinkle, D. F. Heerman, and M. C. Blue, "Falling water drops velocities at 1570 m elevation," Transactions of the American Society of Agricultural Engineers, vol. 30, no. 1, 1987, pp. 94-100. https://doi.org/10.13031/2013.30408
  7. M. C. Moraes, R. S. Tenorio, E. Sampaio, H. A. Barbosa, C. A. C. Santos, H. J. Yoon, and B. H. Kwon, "Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 4, 2019, pp. 734-754.
  8. P. I. A. Kinnell, "Rainfall intensity-kinetic energy relationships for soil loss prediction," Soil Science Society of America, vol. 45, no. 1, 1981, pp. 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x
  9. W. H. Wischmeier, and D. Smith, "Rainfall energy and its relation to soil loss," Transactions of the American Geophysical Union, vol. 39, no. 2, 1958 pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  10. P. Krause, D. P. Boyle, and F. Base, "Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences," European Geosciences Union, vol. 5, no. 1, 2005, pp. 89-97.
  11. D. R. Legates and G. J. M. Jr., "Evaluating the use of goodnessof-fit measures in hydrologic and hydroclimatic model validation," Water Resources Research, vol. 35, no. 1, 1989, pp. 233-241. https://doi.org/10.1029/1998WR900018