References
- Albocher, U., Oberai, A.A., Barbone, P.E and Harari, I. (2009), "Adjoint-weighted equation for inverse problems of incompressible plane-stress elasticity", Comput. Methods Appl. Mech. Eng., 198(30-32), 2412-2420. https://doi.org/10.1016/j.cma.2009.02.034.
- Bell, K. (1969), "A refined triangular plate bending element", J. Numeric Methods Eng., 1(1), 101-122. https://doi.org/10.1002/nme.1620010108.
- Berry, M. V. and Balazs, N. L. (1979), "Nonspreading wave packets", American J. Phys., 47(3), 264-267. https://doi.org/10.1119/1.11855.
- Cen, S., Zhou, M. J. and Fu, X. R. (2011a), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5-6), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010.
- Cen, S., Fu, X. R. and Zhou, M. J. (2011b), "8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Methods Appl. Mech. Eng., 200(29-32), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014.
- Cen, S., Fu, X. R., Zhou, G. H., Zhou, M. J. and Li, C. F. (2011c), "Shape-free finite element method: The plane hybrid stress-function (HS-F), element method for anisotropic materials", Sci. China Phys., Mech. Astronomy, 54(4), 653-665. https://doi.org/10.1007/s11433-011-4272-6.
- Chen, J., Li, C. J. and Chen, W. J. (2010), "A family of spline finite elements", Comput. Struct., 88(11-12), 718-727. https://doi.org/10.1016/j.compstruc.2010.02.011.
- Cen, S., Chen, X. M. and Fu, X. R. (2007), "Quadrilateral membrane element family formulated by the quadrilateral area coordinate method", Comput. Methods Appl. Mech. Eng., 196(41-44), 4337-4353. https://doi.org/10.1016/j.cma.2007.05.004.
- Chien, W. Z. (1980), Calculus of Variations and Finite Elements (in Chinese), Science Press, Beijing.
- Cen, S., Zhou, G. H. and Fu, X. R. (2012), "A shape-free 8-node plane element unsymmetric analytical trial function method", J. Numerical Methods in Eng., 91(2), 534-562. https://doi.org/10.1002/nme.4260.
- Chen, X. M., Cen, S. and Long, Y. Q. (2004), "Membrane elements insensitive to distortion using the quadrilateral area coordinate method", Comput. Struct., 82(1), 35-54. https://doi.org/10.1016/j.compstruc.2003.08.004.
- Fu, X. R., Cen, S., Li, C. F. and Chen, X. M. (2010), "Analytical trial function method for the development of new 8-node plane element based on the variational principle containing Airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568.
- Fernando, L., Munoz, P. and Roehl, D. (2017), "An analytical solution for displacements due to reservoir compaction under arbitrary pressure changes", Appl. Math. Modelling, 52, 145-159. https://doi.org/10.1016/j.apm.2017.06.023.
- Fleck, N. A., Muller, G. M., Ashby, M. F. and Hutchinson, J. W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et Materiali, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
- Gao, Q. and Zou, M. Y. (2017), "An analytical solution for two and three dimensional nonlinear Burgers' equation", Appl. Math. Modelling, 45, 255-270. https://doi.org/10.1016/j.apm.2016.12.018.
- Hou, X., Lee, H. P., Ong, C. J. and Lim, S. P. (2016), "Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses", Adv. Comput. Design, 1(4), 357-370. http://dx.doi.org/10.12989/acd.2016.1.4.357.
- Hutchinson, J. W. and Fleck, N.A. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
- Hsu, Y. S. (2016), "Enriched finite element methods for Timoshenko beam free vibration analysis", Appl. Math. Modelling, 40(15-16), 7012-7033. https://doi.org/10.1016/j.apm.2016.02.042.
- Hu, H.C. (1984), Variational Principles of Theory of Elasticity with Applications, Science Press, Beijing.
- Hirtum, A.V. (2017), "Quasi-analytical solution of two-dimensional Helmholtz equation", Appl. Math. Modelling, 47, 96-102. https://doi.org/10.1016/j.apm.2017.03.026.
- Haitao, C., Chen, Y. L. and Lu, Z. C. (2012), "Euler-Bernoulli beam under arbitrary dynamic loads", J. Mech. Phys. Solids, 57, 1835-1867.
- Koiter, W. T. (1969), "Couple stresses in the theory of elasticity I & II", Philosophical Transactions Royal Society London B, 67, 17-44.
- Li, L. X., Chen, Y. L. and Lu, Z. C. (2015), "Generalization of the multi-scale finite element method to plane elasticity problems", Appl. Math. Modelling, 39(2), 642-653. https://doi.org/10.1016/j.apm.2014.06.012.
- Li, C.J. and Wang, R.H. (2006), "A new 8-node quadrilateral spline finite element", J. Computational Appl. Math., 195(1-2), 54-65. https://doi.org/10.1016/j.cam.2005.07.017.
- Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortion on the performance of isoparametric elements", J. Numeric Methods Eng., 36(20), 3553-3576. https://doi.org/10.1002/nme.1620362009.
- Long, Z.F., Li, J.X. and Cen, S. (1999), "Some basic formulae for area coordinates used in quadrilateral elements", Communication Numerical Methods Eng. Banner, 15(12), 841-852. https://doi.org/10.1002/(SICI)1099-0887(199912)15:12<841::AID-CNM290>3.0.CO;2-A.
- Luobin, L., Fuquan, C. and Zeng, C. (2019), "An analytical solution for sectional estimation of stress and displacement fields around a shallow tunnel", Appl. Math. Modelling, 69, 181-200. https://doi.org/10.1016/j.apm.2018.12.012.
- Madeo, A., Zagari, G. and Casciaro, R. (2012), "An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes", Finite Elements in Analysis and Design, 50, 21-32. https://doi.org/10.1016/j.finel.2011.08.009.
- Mindlin, R. D. (1964) "Microstructure in linear elasticity", Archive for Rational Mechanics and Analysis, 16(1), 51-78. https://doi.org/10.1007/BF00248490.
- Madeo, A., Casciaro, R., Zagari, G., Zinno, R. and Zucco, G. (2014), "A mixed isostatic 16 dof quadrilateral membrane element with drilling rotations based on Airy stresses", Finite Elements in Analysis and Design, 89: 52-66. https://doi.org/10.1016/j.finel.2014.05.013.
- Nix, W. D. and Gao, H. (1998) "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solids, 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
- Narwariya, M., Choudhury, A. and Sharma, A. K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Design. 3(2), 113-132. http://dx.doi.org/10.12989/acd.2018.3.2.113.
- Ooi, E. T., Rajendran, S. and Yeo, J. H. (2004), "A 20-node hexahedron element with enhanced distortion tolerance", J. Numeric Methods Eng., 60(15), 2501-2530. https://doi.org/10.1002/nme.1056.
-
Papanicolopulos, S. A. Zervos, A. and Vardoulakis, I. (2009), "A three dimensional
$C^1$ finite the element for gradient elasticity", J. Numeric Methods Eng., 77(10), 1396-1415. https://doi.org/10.1002/nme.2449. - Rajendran, S. and Liew, K. M. (2003), "A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field", J. Numeric Methods Eng., 58(11), 1713-48. https://doi.org/10.1002/nme.836.
- Rezaiee-Pajand, M. and Karimipour, A. (2019a), "Three stress-based triangular elements", Engineering with Computers 20(10), 1-12. https://doi.org/10.1007/s00366-019-00765-6.
- Rezaiee-Pajand, M. and Karimipour, A (2019b), "Stress Analysis by Two Cuboid Isoparametric Elements", European Journal of Computational Mechanics 28(5), 1-12. https://doi.org/10.13052/ejcm2642-2085.2851
- Siviloglou, G. A. and Christodoulides, D. N. (2007), "Accelerating finite energy Airy beams", Optics Letters, 32(8), 979-981. https://doi.org/10.1364/ol.32.000979.
- Sergei, N., Viacheslav, K., Antti, B. and Niemi, H. (2016), "Variational formulation and isogeometric analysis for fourth-order boundary value problems of the gradient-elastic bar and plane strain/stress problems", Comput. Methods Appl. Mech. Eng., 308: 182-211. https://doi.org/10.1016/j.cma.2016.05.008.
- Soh. A. K., Long. Y. Q. and Cen. S. (2000), "Development of eight-node quadrilateral membrane elements using the area coordinates method", Computational Mechanics, 25(4), 376-84. https://doi.org/10.1007/s004660050484.
- Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haister, W.E. (1977), "On isoparametric vs linear strain triangular elements", J. Numeric Methods Eng., 11(6), 1041-43. https://doi.org/10.1002/nme.1620110610.
- Taylor, R. L., Beresford, P. J. and Wilson, E. L. (1976), "A non-conforming element for stress analysis", J. Numeric Methods Eng., 10(6), 1211-1219. https://doi.org/10.1002/nme.1620100602.
- Toupin. R. A. (1962) "Elastic materials with couple stresses", Archive for Rational Mechanics and Analysis, 11(1), 385-414. https://doi.org/ 10.1007/BF00253945.
- Ushio, Y., Saruwatari, T. and Nagano, Y. (2019), "Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast", Adv. Comput. Design, 4(1), 53-72. https://doi.org/10.12989/acd.2019.4.1.053.
- Vini, M. H. and Daneshmand, S. (2019), "Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques", Adv. Comput. Design, 4(1), 33-41. http://doi.org/10.12989/acd.2019.4.1.033.
- Willberg, C. (2016), "Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements", Adv. Comput. Design, 1(1), 37-60. http://doi.org/10.12989/acd.2016.1.1.037.
- Wei, Y. G., Wang, X. Z. and Wu, X. L. (2001), "Theoretical and experimental study on micro-indentation size effects (in Chinese)", Science China (A), 30, 1025-1032. http://doi.org/10.1007/BF02872285.
- Washizu, K. (1982), "Variational Methods in Elasticity and Plasticity", 3rd ed., Pergamon Press, New York, NY.
- Yang, F., Chong, A. M., Lam, D. C. C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity" J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1002/zamm.19840640121.
- Zervos, A., Papanastasiou, P. and, Vardoulakis, I. (2001), "Modelling of localization and scale in thick-walled cylinders with gradient elastoplasticity", J. Solids Struct., 38(30-31), 5081-5095. https://doi.org/10.1016/S0020-7683(00)00337-1.
- Zervos, A., Papanicolopulos, P. and Vardoulakis, I. (2009), "Two finite element discretization for gradient elasticity", J. Eng. Mech., 135(3), 203-213. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(203).
- Zhou, P. and Cen, S. (2015) "A novel shape-free plane quadratic polygonal hybrid stress-function element", Math. Problems Eng., 2015, 302-325. http://doi.org/10.1155/2015/491325.
- Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. (2005), The Finite Element Method: Its Basis & Fundamental, 6th ed., Butterworth Heinemann, U.S.A.
- Zhaolin, C., Zhichun, Y., Ning, G. and Guiwei, Z. (2018), "An energy finite element method for high-frequency vibration analysis of beams with axial force", Appl. Math. Model., 61, 521-539. https://doi.org/10.1016/j.apm.2018.04.016.