DOI QR코드

DOI QR Code

Two rectangular elements based on analytical functions

  • Received : 2019.06.13
  • Accepted : 2020.01.08
  • Published : 2020.04.25

Abstract

To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are found for the stress functions. These trial functions are matched with each element number of degrees of freedom, which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses.

Keywords

References

  1. Albocher, U., Oberai, A.A., Barbone, P.E and Harari, I. (2009), "Adjoint-weighted equation for inverse problems of incompressible plane-stress elasticity", Comput. Methods Appl. Mech. Eng., 198(30-32), 2412-2420. https://doi.org/10.1016/j.cma.2009.02.034.
  2. Bell, K. (1969), "A refined triangular plate bending element", J. Numeric Methods Eng., 1(1), 101-122. https://doi.org/10.1002/nme.1620010108.
  3. Berry, M. V. and Balazs, N. L. (1979), "Nonspreading wave packets", American J. Phys., 47(3), 264-267. https://doi.org/10.1119/1.11855.
  4. Cen, S., Zhou, M. J. and Fu, X. R. (2011a), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5-6), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010.
  5. Cen, S., Fu, X. R. and Zhou, M. J. (2011b), "8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Methods Appl. Mech. Eng., 200(29-32), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014.
  6. Cen, S., Fu, X. R., Zhou, G. H., Zhou, M. J. and Li, C. F. (2011c), "Shape-free finite element method: The plane hybrid stress-function (HS-F), element method for anisotropic materials", Sci. China Phys., Mech. Astronomy, 54(4), 653-665. https://doi.org/10.1007/s11433-011-4272-6.
  7. Chen, J., Li, C. J. and Chen, W. J. (2010), "A family of spline finite elements", Comput. Struct., 88(11-12), 718-727. https://doi.org/10.1016/j.compstruc.2010.02.011.
  8. Cen, S., Chen, X. M. and Fu, X. R. (2007), "Quadrilateral membrane element family formulated by the quadrilateral area coordinate method", Comput. Methods Appl. Mech. Eng., 196(41-44), 4337-4353. https://doi.org/10.1016/j.cma.2007.05.004.
  9. Chien, W. Z. (1980), Calculus of Variations and Finite Elements (in Chinese), Science Press, Beijing.
  10. Cen, S., Zhou, G. H. and Fu, X. R. (2012), "A shape-free 8-node plane element unsymmetric analytical trial function method", J. Numerical Methods in Eng., 91(2), 534-562. https://doi.org/10.1002/nme.4260.
  11. Chen, X. M., Cen, S. and Long, Y. Q. (2004), "Membrane elements insensitive to distortion using the quadrilateral area coordinate method", Comput. Struct., 82(1), 35-54. https://doi.org/10.1016/j.compstruc.2003.08.004.
  12. Fu, X. R., Cen, S., Li, C. F. and Chen, X. M. (2010), "Analytical trial function method for the development of new 8-node plane element based on the variational principle containing Airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568.
  13. Fernando, L., Munoz, P. and Roehl, D. (2017), "An analytical solution for displacements due to reservoir compaction under arbitrary pressure changes", Appl. Math. Modelling, 52, 145-159. https://doi.org/10.1016/j.apm.2017.06.023.
  14. Fleck, N. A., Muller, G. M., Ashby, M. F. and Hutchinson, J. W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et Materiali, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
  15. Gao, Q. and Zou, M. Y. (2017), "An analytical solution for two and three dimensional nonlinear Burgers' equation", Appl. Math. Modelling, 45, 255-270. https://doi.org/10.1016/j.apm.2016.12.018.
  16. Hou, X., Lee, H. P., Ong, C. J. and Lim, S. P. (2016), "Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses", Adv. Comput. Design, 1(4), 357-370. http://dx.doi.org/10.12989/acd.2016.1.4.357.
  17. Hutchinson, J. W. and Fleck, N.A. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
  18. Hsu, Y. S. (2016), "Enriched finite element methods for Timoshenko beam free vibration analysis", Appl. Math. Modelling, 40(15-16), 7012-7033. https://doi.org/10.1016/j.apm.2016.02.042.
  19. Hu, H.C. (1984), Variational Principles of Theory of Elasticity with Applications, Science Press, Beijing.
  20. Hirtum, A.V. (2017), "Quasi-analytical solution of two-dimensional Helmholtz equation", Appl. Math. Modelling, 47, 96-102. https://doi.org/10.1016/j.apm.2017.03.026.
  21. Haitao, C., Chen, Y. L. and Lu, Z. C. (2012), "Euler-Bernoulli beam under arbitrary dynamic loads", J. Mech. Phys. Solids, 57, 1835-1867.
  22. Koiter, W. T. (1969), "Couple stresses in the theory of elasticity I & II", Philosophical Transactions Royal Society London B, 67, 17-44.
  23. Li, L. X., Chen, Y. L. and Lu, Z. C. (2015), "Generalization of the multi-scale finite element method to plane elasticity problems", Appl. Math. Modelling, 39(2), 642-653. https://doi.org/10.1016/j.apm.2014.06.012.
  24. Li, C.J. and Wang, R.H. (2006), "A new 8-node quadrilateral spline finite element", J. Computational Appl. Math., 195(1-2), 54-65. https://doi.org/10.1016/j.cam.2005.07.017.
  25. Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortion on the performance of isoparametric elements", J. Numeric Methods Eng., 36(20), 3553-3576. https://doi.org/10.1002/nme.1620362009.
  26. Long, Z.F., Li, J.X. and Cen, S. (1999), "Some basic formulae for area coordinates used in quadrilateral elements", Communication Numerical Methods Eng. Banner, 15(12), 841-852. https://doi.org/10.1002/(SICI)1099-0887(199912)15:12<841::AID-CNM290>3.0.CO;2-A.
  27. Luobin, L., Fuquan, C. and Zeng, C. (2019), "An analytical solution for sectional estimation of stress and displacement fields around a shallow tunnel", Appl. Math. Modelling, 69, 181-200. https://doi.org/10.1016/j.apm.2018.12.012.
  28. Madeo, A., Zagari, G. and Casciaro, R. (2012), "An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes", Finite Elements in Analysis and Design, 50, 21-32. https://doi.org/10.1016/j.finel.2011.08.009.
  29. Mindlin, R. D. (1964) "Microstructure in linear elasticity", Archive for Rational Mechanics and Analysis, 16(1), 51-78. https://doi.org/10.1007/BF00248490.
  30. Madeo, A., Casciaro, R., Zagari, G., Zinno, R. and Zucco, G. (2014), "A mixed isostatic 16 dof quadrilateral membrane element with drilling rotations based on Airy stresses", Finite Elements in Analysis and Design, 89: 52-66. https://doi.org/10.1016/j.finel.2014.05.013.
  31. Nix, W. D. and Gao, H. (1998) "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solids, 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
  32. Narwariya, M., Choudhury, A. and Sharma, A. K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Design. 3(2), 113-132. http://dx.doi.org/10.12989/acd.2018.3.2.113.
  33. Ooi, E. T., Rajendran, S. and Yeo, J. H. (2004), "A 20-node hexahedron element with enhanced distortion tolerance", J. Numeric Methods Eng., 60(15), 2501-2530. https://doi.org/10.1002/nme.1056.
  34. Papanicolopulos, S. A. Zervos, A. and Vardoulakis, I. (2009), "A three dimensional $C^1$ finite the element for gradient elasticity", J. Numeric Methods Eng., 77(10), 1396-1415. https://doi.org/10.1002/nme.2449.
  35. Rajendran, S. and Liew, K. M. (2003), "A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field", J. Numeric Methods Eng., 58(11), 1713-48. https://doi.org/10.1002/nme.836.
  36. Rezaiee-Pajand, M. and Karimipour, A. (2019a), "Three stress-based triangular elements", Engineering with Computers 20(10), 1-12. https://doi.org/10.1007/s00366-019-00765-6.
  37. Rezaiee-Pajand, M. and Karimipour, A (2019b), "Stress Analysis by Two Cuboid Isoparametric Elements", European Journal of Computational Mechanics 28(5), 1-12. https://doi.org/10.13052/ejcm2642-2085.2851
  38. Siviloglou, G. A. and Christodoulides, D. N. (2007), "Accelerating finite energy Airy beams", Optics Letters, 32(8), 979-981. https://doi.org/10.1364/ol.32.000979.
  39. Sergei, N., Viacheslav, K., Antti, B. and Niemi, H. (2016), "Variational formulation and isogeometric analysis for fourth-order boundary value problems of the gradient-elastic bar and plane strain/stress problems", Comput. Methods Appl. Mech. Eng., 308: 182-211. https://doi.org/10.1016/j.cma.2016.05.008.
  40. Soh. A. K., Long. Y. Q. and Cen. S. (2000), "Development of eight-node quadrilateral membrane elements using the area coordinates method", Computational Mechanics, 25(4), 376-84. https://doi.org/10.1007/s004660050484.
  41. Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haister, W.E. (1977), "On isoparametric vs linear strain triangular elements", J. Numeric Methods Eng., 11(6), 1041-43. https://doi.org/10.1002/nme.1620110610.
  42. Taylor, R. L., Beresford, P. J. and Wilson, E. L. (1976), "A non-conforming element for stress analysis", J. Numeric Methods Eng., 10(6), 1211-1219. https://doi.org/10.1002/nme.1620100602.
  43. Toupin. R. A. (1962) "Elastic materials with couple stresses", Archive for Rational Mechanics and Analysis, 11(1), 385-414. https://doi.org/ 10.1007/BF00253945.
  44. Ushio, Y., Saruwatari, T. and Nagano, Y. (2019), "Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast", Adv. Comput. Design, 4(1), 53-72. https://doi.org/10.12989/acd.2019.4.1.053.
  45. Vini, M. H. and Daneshmand, S. (2019), "Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques", Adv. Comput. Design, 4(1), 33-41. http://doi.org/10.12989/acd.2019.4.1.033.
  46. Willberg, C. (2016), "Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements", Adv. Comput. Design, 1(1), 37-60. http://doi.org/10.12989/acd.2016.1.1.037.
  47. Wei, Y. G., Wang, X. Z. and Wu, X. L. (2001), "Theoretical and experimental study on micro-indentation size effects (in Chinese)", Science China (A), 30, 1025-1032. http://doi.org/10.1007/BF02872285.
  48. Washizu, K. (1982), "Variational Methods in Elasticity and Plasticity", 3rd ed., Pergamon Press, New York, NY.
  49. Yang, F., Chong, A. M., Lam, D. C. C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity" J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1002/zamm.19840640121.
  50. Zervos, A., Papanastasiou, P. and, Vardoulakis, I. (2001), "Modelling of localization and scale in thick-walled cylinders with gradient elastoplasticity", J. Solids Struct., 38(30-31), 5081-5095. https://doi.org/10.1016/S0020-7683(00)00337-1.
  51. Zervos, A., Papanicolopulos, P. and Vardoulakis, I. (2009), "Two finite element discretization for gradient elasticity", J. Eng. Mech., 135(3), 203-213. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(203).
  52. Zhou, P. and Cen, S. (2015) "A novel shape-free plane quadratic polygonal hybrid stress-function element", Math. Problems Eng., 2015, 302-325. http://doi.org/10.1155/2015/491325.
  53. Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. (2005), The Finite Element Method: Its Basis & Fundamental, 6th ed., Butterworth Heinemann, U.S.A.
  54. Zhaolin, C., Zhichun, Y., Ning, G. and Guiwei, Z. (2018), "An energy finite element method for high-frequency vibration analysis of beams with axial force", Appl. Math. Model., 61, 521-539. https://doi.org/10.1016/j.apm.2018.04.016.