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NOTE ON STRONG LAW OF LARGE NUMBER UNDER
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Abstract. The classical limit theorems like strong law of large numbers,

central limit theorems and law of iterated logarithms are fundamental the-

ories in probability and statistics. These limit theorems are proved under
additivity of probabilities and expectations. In this paper, we investigate

strong law of large numbers under sub-linear expectation which generalize

the classical ones. We give strong law of large numbers under sub-linear
expectation with respect to the partial sums and some conditions sim-

ilar to Petrov’s. It is an extension of the classical Chung type strong

law of large numbers of Jardas et al.’s result. As an application, we ob-
tain Chung’s strong law of large number and Marcinkiewicz’s strong law

of large number for independent and identically distributed random vari-
ables under the sub-linear expectation. Here the sub-linear expectation

and its related capacity are not additive.

1. Introduction

The classical strong laws of large numbers are widely been known as funda-
mental limit theorems in the theory of probability and statistics. It plays fruit-
ful role in the development of probability theory and its applications. However,
many uncertain phenomena can not be well modeled by using additive proba-
bilities and additive expectations. Non-additive probabilities and non-additive
expectations are useful tools for studying uncertainties in statistics, measure of
risk, super-hedge Pricing and modeling uncertainty in finance (c.f.[7],[8],[11],[12],
[16]). Recently, motivated by the risk measures, superhedge pricing and model-
ing uncertainty in finance, the notions of independent and identically distributed
random variables under the sublinear expectations is introduced by Peng([12-
13],[15],[16]). Under Peng’s framework, many limit theorems have been inves-
tigating. Chen([1]) proved a strong law of large numbers for independent and
identically random variables under capacities induced by sublinear expectations.
Chen, Hu and Zong([2]) obtained strong laws of large numbers for sub-linear
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expectation without independence. Zhang and Lin([22]) proved Marcinkiewicz’s
strong law of large numbers for nonlinear expectations. Many authors investi-
gated on limit theorems under nonlinear expectation in the wide fields such as
the strong law of large number([1],[3],[20]), the law of the iterated logarithm([3])
and the convergence of the infinite series of random variables([19],[23]). For the
convergence of the sums of random variables, Zhang([23]) gave three series the-
orem on the sufficient and necessary conditions for the almost sure convergence
of the infinite series

∑∞
n=1Xn under the sub-linear expectation.

In this paper, we investigate strong law of large numbers under sub-linear
expectation which generalize the classical ones. We give strong law of large
numbers under sub-linear expectation with respect to the partial sums and
some conditions similar to Petrov’s([17-18]). It is an extension of the classical
Chung type strong law of large numbers of Jardas et al.’s result([10]). As an
application, we obtain Chung’s strong law of large number and Marcinkiewicz’s
strong law of large number for independent and identically distributed random
variables under the sub-linear expectation. Here the sub-linear expectation and
its related capacity are not additive.

Our paper is organized as follows: we introduce some basic setting, definitions
and proposition in Section 2. In Section 3, we state and prove our main result.

2. Second section

In this section, we introduce some basic definitions and notations about sub-
linear expectation. Refer to Peng([15-16]) for more details.

Let (Ω,F) be a given measurable space and let H be a linear space of real
functions defined on (Ω,F) such that if X1, X2, · · · , Xn ∈ H then ϕ(X1, X2, · · · ,
Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(R

n) denotes the linear space of
local Lipschitz functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn,
for some C > 0, m ∈ N depending on ϕ. Let Cb,Lip(R

n) denote the linear space
of bounded functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C|x− y|, ∀ x, y ∈ Rn,
for some C > 0 depending on ϕ. H is considered as a space of ”random vari-
ables”. In this case we denote X ∈ H.

Definition 1. ([12-16]) A sub-linear expectation Ê on H is a function Ê : H →
R̄ satisfying the following properties: for all X,Y ∈ H we have

(i) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];

(ii) Constant preserving: Ê[c] = c;

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ]; whenever Ê[X] + Ê[Y ] is not
of the form +∞−∞ or −∞+∞;
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(iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0

Here R̄ = [−∞,∞]. The triple (Ω,H, Ê) is called a sub-linear expectation space.

Given a sub-linear expectation Ê, let us denote the conjugate expectation Ê
of Ê by

Ê [X] = −Ê[−X], ∀X ∈ H.

From the definition, it is easily shown that

Ê [X] ≤ Ê[X], Ê[X + c] = Ê[X] + c and Ê[X − Y ] ≥ Ê[X]− Ê[Y ]

for all X,Y ∈ H with Ê[Y ] being finite. Further, if Ê[|X|] is finite, then Ê [X]

and Ê[X] are both finite.
Let X = (X1, X2, · · · , Xn) be a given n-dimensional random vector on a

sublinear expectation space (Ω,H, Ê). We define a functional on Cl,Lip(R
n) by

FX [ϕ] := Ê[ϕ(X)] : ϕ ∈ Cl,Lip(Rn)→ R.

FX is called the distribution of X under Ê.

We adopt the following notion of independence and identical distribution for
sub-linear expectation which is initiated by Peng([12-16]).

Definition 2. (Identical distribution) Let X1 and X2 be two n-dimensional ran-

dom vectors defined respectively in sub-linear expectation spaces (Ω1,H1, Ê1)

and (Ω2,H2, Ê2). X1 and X2 are called identically distributed, denoted by
X1 =d X2 , if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-linear expectation are finite.

Definition 3. (Independent) In a sub-linear expectation space (Ω,H, Ê), a
random vector Y = (Y1, · · · , Yn), Yi ∈ H is said to be independent to another

random vector X = (X1, · · · , Xm), Xi ∈ H under Ê if

Ê[ϕ(X,Y)] = Ê[Êϕ(x,Y)|x=X], ∀ϕ ∈ Cl,Lip(Rm ×Rn)

whenever ϕ(x) = Ê[|ϕ(x,Y)|] <∞ for all x and Ê[|ϕ(X)|] <∞.

Definition 4. (IID random variables) A sequence of random variables {Xn, n ≥
1} is said to be independent, if Xi+1 is independent to (X1, X2, · · · , Xi) for each
i ≥ 1. It is said to be identically distributed, if Xi =d X1 for each i ≥ 1.



28 K. S. HWANG

In Peng([12-16]), the space of the test function ϕ is Cl,Lip(R
n). When the

considered random variables have finite moments of each order, i.e., Ê[ϕ(X)] <
∞ for each ϕ ∈ Cl,Lip(R

n), the test function ϕ in the definition is limit in
the space of bounded Lipschitz function Cb,Lip(R

n), since there exists ϕk ∈
Cb,Lip(R

n) such that ϕk ↓ ϕ (ϕk(x) = supy∈Rn {ϕ(y)− k|x− y|}).

Definition 5. (I) A function V : F → [0, 1] is called a capacity if V(∅) =
0,V(Ω) = 1 and V(A ∪B) ≤ V(A) + V(B) for all A,B ∈ F .

(II) A function V : F → [0, 1] is called to be countably sub-additive if

V(∪∞n=1An) ≤
∞∑
n=1

V(An) = 1, ∀An ∈ F .

Let (Ω,H.Ê) be a sub-linear space. We denote a pair (V,V) of capacities by

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, V(A) = 1− V(Ac), ∀A ∈ F ,

where Ac is the complement se of A. Then

Ê[f ] ≤ V(A) ≤ Ê[g], Ê [f ] ≤ V(A) ≤ Ê [g],

if f ≤ IA ≤ g, f, g ∈ H. It is obvious that V is sub-additive, i.e., V(A ∪ B) ≤
V(A) + V(B). But V and Ê are not. However, we have

V(A ∪B) ≤ V(A) + V(B) and Ê [X + Y ] ≤ Ê [X] + Ê[Y ]

due to the fact that

V(Ac ∩Bc) = V(Ac \B) ≥ V(Ac)−V(B) and Ê[−X − Y ] ≤ Ê[−X]− Ê[−Y ].

Further, if X is not in H, we define Ê by Ê[X] = inf{Ê[Y ] : X ≤ Y, Y ∈ H}.
Then V(A) = Ê[IA].

In this paper we only consider the capacity generated by a sub-linear expec-

tation. Given a sub-linear expectation space (Ω,H, Ê), we define a capacity:

V(A) := Ê[IA], ∀A ∈ F

and also define the conjugate capacity:

V(A) := 1− V(Ac), ∀A ∈ F .

It is clear that V is a sub-additive capacity and V(A) = Ê [IA].
The following representation theorem for sub-linear expectation is very use-

ful(see Peng([15-16]) for the Proof):
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Proposition 2.1. Let (Ω,H, Ê) be a sublinear expectation space.
(I) There exists a family of finitely additive probability measures {Pθ : θ ∈ Θ}

defined on (Ω,F) such that for each X ∈ H

Ê[X] = max
θ∈Θ

EPθ [X].

(II) For any fixed random variables X ∈ H, there exists a family of proba-
bility measures {µθ}θ∈Θ defined on (R,B(R)) such that for each ϕ ∈ Cl,Lip(R),

Ê[ϕ(X)] = sup
θ∈Θ

∫
R

ϕ(x)µθ(dx).

For any random variable X and constant c, define Xc = (−c) ∨ (X ∧ c).

3. Main result and Proof

In this section, we give the main results. We first recall some related im-

portant lemmas in sub-linear expectation space (Ω,H, Ê). Then we give strong
law of large numbers under sub-linear expectation by using a theorem similar
to Kolmogorov’s three series theorem in classical probability theory.

Lemma 3.1. Let {Xn;n ≥ 1} be a sequence of independent random variables on

(Ω,H, Ê). Suppose that V is countably sub-additive. Then
∑∞
n=1Xn converges

almost surely in capacity if the following three conditions hold for some c > 0;
(S1)

∑∞
n=1 V(|Xn| > c) <∞,

(S2)
∑∞
n=1 Ê[Xc

n] and
∑∞
n=1 Ê[−Xc

n] are both convergent,

(S3)
∑∞
n=1 Ê[(Xc

n − Ê[Xc
n])2)] <∞ and

∑∞
n=1 Ê[(Xc

n + Ê[−Xc
n])2)] <∞

Conversely, if V is continuous and
∑∞
n=1Xn is convergent almost surely in

capacity V, then (S1), (S2), (S3) will hold for all c > 0

Proof. The proof of Lemma 3.1 can be found in Zhang([23]). �

The following lemma can be found in Chen([4]).

Lemma 3.2. (Chebyshev’s inequality) Let X be a real measurable random vari-

able in sub-linear expectation space (Ω,H, Ê). Let f(x) > 0 be a nondecreasing
function on R. Then for any x,

V(X ≥ x) ≤ Ê[f(x)]

f(x)
, V(X ≥ x) ≤ Ê [f(x)]

f(x)

Let f(x) > 0 be an even function and nondecreasing on (0,∞). Then for any
x > 0,

V(|X| ≥ x) ≤ Ê[f(x)]

f(x)
, V(|X| ≥ x) ≤ Ê [f(x)]

f(x)
.
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Lemma 3.3. (Kronecker’s lemma) For real sequcence {xn, n ≥ 1} and {bn, n ≥
1}, with 0 < bn ↑ ∞, if

∑∞
n=1 xk converges, then

1

bn

n∑
k=1

bkxk → 0 as n→∞

The following theorem is strong law of large numbers under sub-linear ex-
pectation, from which we can deduce the strong convergence of a random series
under sub-linear expectation. It is an extension of the classical Chung type
strong law of large numbers of Jardas et al.’s result([10]).

Theorem 3.4. Let {Xn, n ≥ 1} be a sequence of independent random vari-
ables with E[Xn] = 0 = E [Xn], n = 1, 2, · · · in the sub-linear expectation

space(Ω,H, Ê), and let V be countably sub-additive. Let {an, n ≥ 1} be a non-
zero sequence tending to infinity. Let {gn(x), n ≥ 1} be a sequence of locally
Lipschitz, positive and non-decreasing for x > 0. Let αn ≥ 1, βn ≤ 2,Kn ≥
1,Mn ≥ 1 (n ∈ N) be constants satisfying for t1 ≤ t2,

gn(t1)

t1
αn
≤ Kn

gn(t2)

t2
αn

and
t1
βn

gn(t1)
≤Mn

t2
βn

gn(t2)
(1)

If
∞∑
n=1

Kn
Ê[gn(Xn)]

gn(|an|)
<∞ and

∞∑
n=1

Mn
Ê[gn(Xn)]

gn(|an|)
<∞. (2)

Then
Sn
an
→ 0 a.s. V

Proof. It would be sufficient for our purpose to get the conditions (S1), (S2), (S3)
of Lemma 3.1. We first show condition (S1). By Lemma 3.2, we have

V(|Xn| ≥ |an|) ≤
Ê[gn(|Xn|)]
gn(|an|)

.

and hence by (2)

∞∑
n=1

V(|Xn| ≥ |an|) ≤
∞∑
n=1

Ê[gn(|Xn|)]
gn(|an|)

<∞.

It follows that condition (S1) in Lemma 3.1 is proved.
Our next claim is that condition (S2) in Lemma 3.1 holds. Define

Xc
n = (−|an|) ∨ (Xn ∧ |an|), n = 1, 2, · · · .

We just need to show
∞∑
n=1

Ê[Xc
n] <∞.
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Because of considering {−Xn, n ≥ 1} instead of {Xn, n ≥ 1} in Lemma 3.1, we
can obtain

∞∑
n=1

Ê[−Xc
n] <∞.

By Proposition 2.1, for any fixed random variable X ∈ H, there exists a family
of probability measure {µθ}θ∈Θ defined on (R,B(R)) such that for each ϕ ∈
Cl,Lip(R)

Ê[ϕ(X)] = sup
θ∈Θ

∫
R

ϕ(x)µθ(dx).

Using the fact that Ê[Xn] = 0 = Ê [Xn] for n = 1, 2, · · · , we have Xn − Xc
n ≤

(|Xn| − |an|)+ ≤ |Xn| · I{|Xn|>|an|} and also |Xn| · I{|Xn|>|an|} ∈ Cl,Lip(R), we
have

Ê[Xc
n] = Ê[Xc

n]− Ê[Xn] ≤ Ê[Xc
n −Xn] ≤ Ê[|Xn −Xc

n|] ≤ Ê[(|Xn| − |an||]
≤ Ê[|Xn| · I{|Xn| > |an|}]

and also

Ê [Xc
n] ≤ Ê [|Xn| · I{|Xn| > an}].

For |x| > |an|, we have by (1)

|x|
|an|

≤ |x|
αn

|an|αn
≤ Kn

gn(|x|)
gn(|an|)

.

Thus we have by Proposition 2.1

|Ê[Xc
n]| ≤ sup

θ∈Θ

∫
|x|>|an|

|x| µn,θ(dx)

≤ sup
θ∈Θ

∫
|x|>|an|

Kn
|an|

gn(|an|)
gn(|x|)µn,θ(dx)

≤ Kn
|an|

gn(|an|)
sup
θ∈Θ

∫
|x|>|an|

gn(|x|)µn,θ(dx)

≤ Kn
|an|

gn(|an|)
Ê[gn(|Xn|)]

and by (2)
∞∑
n=1

|Ê[Xc
n]|

|an|
<∞.

We only need to show condition (S3) in Lemma 3.1. For |x| < |an|, we have

|x|2

|an|2
≤ |x|

βn

|an|βn
≤Mn

gn(|x|)
gn(|an|)

,
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hence

Ê[Xc
n

2] = sup
θ∈Θ

∫
|x|≤|an|

x2µn,θ(dx)

≤ Mn
|an|2

gn(|an|)
sup
θ∈Θ

∫
|x|≤|an|

gn(|x|)µn,θ(dx)

≤ Mn
|an|2

gn(|an|)
Ê[gn(|Xn|)]

and by (2)
∞∑
n=1

Ê

[(
Xc
n

|an|

)2
]
<∞.

From Lemma 3.1, it follows that the series
∑∞
n=1Xn/an is convergent a.s. in

capacity. By Lemma 3.3, we obtain

Sn
an
→ 0 a.s. V,

which completes the proof. �

We have the following corollaries. The following Corollary 3.5 is Chung type
strong law of large numbers under sub-linear expectation (c.f. [6],[17-18])

Corollary 3.5. Let {Xn, n ≥ 1} be a sequence of independent random variables

in the sub-linear expectation space (Ω,H, Ê), and let V be countably sub-additive.
Let {an, n ≥ 1} be a positive increasing sequence tending to infinity. Let g(x) be
a locally Lipschhitz, even function, positive and non-decreasing for x > 0. Let
one of the following two conditions hold:

(a) x/g(x) is non-decreasing for x > 0,
(b) x/g(x) and g(x)/x2 are non-increasing for x > 0.
If the series

∞∑
n=1

Ê[g(Xn)]

g(an)
<∞

is satisfied. Moreover, suppose that

Ê[Xn] = 0 = Ê [Xn], n = 1, 2, · · ·

when condition (b) is satisfied. Then

Sn
an
→ 0 a.s. V

The following Corollary 3.6 is very similar to Marcinkiew’s strong law of large
numbers for nonlinear expectations(see [19],[22]). It is to state the consequence
of Theorem 3.4 corresponding gn(x) = x2 and an = n1/p, n = 1, 2, · · · .
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Corollary 3.6. Suppose {Xn, n ≥ 1} is a sequence of independent and identical

random variable in the sub-linear expectation space with Ê[X1] = 0 = Ê [X1] and
V is countably sub-additive. If the series

∞∑
n=1

Ê[X2
n]

n2/p
<∞

is satisfied.
(I) For 0 < p < 1, then

Sn
n1/p

→ 0 a.s. V

(II) For 1 ≤ p < 2, suppose lima→∞ Ê[(|X1| − a)+] = 0, then

Sn
n1/p

→ 0 a.s. V
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