DOI QR코드

DOI QR Code

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim (AI LAB, Faculty of Information Technology, Ton Duc Thang University) ;
  • Kau, Dar (Department Electrical & Electronic Engineering, University of Bath) ;
  • Tai, Y. (Mechanical Engineering, California Institute of Technology) ;
  • Chen, C.Y.J. (Department Electrical & Electronic Engineering, University of Bath)
  • 투고 : 2019.11.22
  • 심사 : 2020.03.09
  • 발행 : 2020.04.25

초록

Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.

키워드

참고문헌

  1. Adeli, H. and Jiang, X.M. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., ASCE, 132(1), 102-111. https://doi.org/10.1061/(asce)0733-9445(2006)132:1(102)
  2. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  3. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1) 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  4. Chen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  5. Chen, T. (2019), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., 17(3), 307-315. https://doi.org/10.12989/eas.2019.17.3.307.
  6. Chen, T., Babanin, A., Muhammad, A., Chapron, B. and Chen, C.Y.J. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuit. Syst. Comput., 29(1), 2050015, https://doi.org/10.1142/S0218126620500152.
  7. Mori, T. (1985), "Criteria for asymptotic stability of linear time delay systems", IEEE Tran. Autom. Control, 30(2), 158-161. https://doi.org/10.1109/TAC.1985.1103901.
  8. Rabiei, K., Ordokhani, Y. and Babolian, E. (2017), "The Boubaker polynomials and their application to solve fractional optimal control problems", Nonlin. Dyn., 88(2), 1013-1026. https://doi.org/10.1007/s11071-013-0841-8.
  9. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  10. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18, 449-470. http://dx.doi.org/10.12989/sss.2016.18.3.449.
  11. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  12. Trinh, H. and Aldeen, M. (1995), "A comment on decentralized stabilization of large scale interconnected systems with delays", IEEE Tran. Autom. Control, 40(5), 914-916. https://doi.org/10.1109/9.384229.
  13. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  14. Zaky, M.A. (2018), "A Legendre collocation method for distributed{order fractional optimal control problems", Nonlin. Dyn., 91(4), 2667-2681. https://doi.org/10.1007/s11071-013-0869-9.
  15. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439.
  16. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  17. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.

피인용 문헌

  1. System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.797
  2. Modified algorithmic LMI design with applications in aerospace vehicles vol.8, pp.1, 2020, https://doi.org/10.12989/aas.2021.8.1.069
  3. Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
  4. Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2020, https://doi.org/10.12989/sem.2021.79.2.131