DOI QR코드

DOI QR Code

나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석

The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma

  • 김영훈 (한국기계연구원 환경시스템연구본부) ;
  • 신동호 (한국기계연구원 환경시스템연구본부) ;
  • 이건희 (한국기계연구원 환경시스템연구본부) ;
  • 홍기정 (한국기계연구원 환경시스템연구본부) ;
  • 김학준 (한국기계연구원 환경시스템연구본부) ;
  • 김용진 (한국기계연구원 환경시스템연구본부) ;
  • 한방우 (한국기계연구원 환경시스템연구본부) ;
  • 황정호 (연세대학교 기계공학부)
  • Kim, Younghun (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Shin, Dongho (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Lee, Gunhee (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Hong, Keejung (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Kim, Hak-Joon (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Kim, Yong-Jin (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Han, Bangwoo (Environmental System Research Division, Korea Institute of Machinery and Materials) ;
  • Hwang, Jungho (Mechanical Engineering, Yonsei University)
  • 투고 : 2020.02.23
  • 심사 : 2020.03.02
  • 발행 : 2020.03.31

초록

Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

키워드

참고문헌

  1. Brunekreef, B., Beelen, R., Hoek, G., Schouten, L., Bausch-Goldbohm, S., Fischer, P., Armstrong, B., Hughes, E., Jerrett, M., and Brandt, P. (2009). Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study, Research Report Health Effect Institute, 139, 5-71.
  2. Chang, H.S., and Choi, Y.R. (2000). Particulate conversion of $SO_2$ by $NH_3$ injection in a pulsed corona aerosol reactor, Aerosol Science and Technology, 32(4), 268-283. https://doi.org/10.1080/027868200303614
  3. Chang, J.S. (1989). The role of $H_2O$ and $NH_3$ on the formation of $NH_4NO_3$ aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases, Journal of Aerosol Science, 20(8), 1087-1090. https://doi.org/10.1016/0021-8502(89)90768-4
  4. Christensen, P.S., Madsen, N.M., and Livbjerg, H. (1992). The formation of aerosols from $SO_2$ and $NH_3$ in humid air, Journal of Aerosol Science, 23(1), 261-264. https://doi.org/10.1016/0021-8502(92)90399-G
  5. Chun, M.Y., Lee, Y.J., and Kim, H.K. (1993). A study on equilibrium of $NH_4NO_3$(s) - $HNO_3$(g) - $NH_3$(g) in urban atmosphere, Journal of Korean Society for Atmospheric Environment, 9(2), 154-159.
  6. Guo, Y., Liu, Z., Huang, Z., Liu, Q., and Guo, S. (2005). Reaction behavior of sulfur dioxide with ammonia, Industrial and Engineering Chemical Research, 44, 9989-9995. https://doi.org/10.1021/ie050734q
  7. Han, B., Kim, H.J., and Kim, Y.J. (2011). The experimental study on removal of sulfur dioxide and nitrogen oxide using a nano-pulse corona discharger at different temperatures, Journal of Korean Society for Atmospheric Environment, 27(4), 387-394. https://doi.org/10.5572/KOSAE.2011.27.4.387
  8. Hirota, K., Niina, T., Anwar, E., Namba, H., Tokunaga, O., and Tabata, Y. (1993). Reactions of sulfur dioxide with ammonia, Environmental Science, 6(2), 143-150. https://doi.org/10.1039/b311201m
  9. Kim, K.M., Seo, H.S., Park, J.H., Kim, T.H., Lee, J.H., and Son, Y.S. (2018). A study on additives for improvement of $SO_2$ removal process using an electron beam, Journal of Korean Society for Atmospheric Environment, 34(6), 772-779. https://doi.org/10.5572/KOSAE.2018.34.6.772
  10. Kim, S.M., Kim, D.J., and Kim, K.S. (2005). Efficient desulfurization and denitrification by low temperature plasma process, Korean Chemical Engineering Research, 43(1), 129-135.
  11. Kim, T.O., Ishida, T., Adachi, M., Okuyama, K., and Seinfeld, J.H. (1998). Nanometer-sized particle formation from $NH_3/SO_2/H_2O$/Air mixtures by ionizing irradiation, Aerosol Science and Technology, 29(2), 111-125. https://doi.org/10.1080/02786829808965556
  12. Qi, G., and Wang, S. (2017). Thermodynamic modeling of $NH_3-CO_2-SO_2-K_2SO_4-H_2O$ system for combined $CO_2$ and $SO_2$ capture using aqueous $NH_3$, Applied Energy, 191, 549-558. https://doi.org/10.1016/j.apenergy.2017.01.083
  13. Shin, D.H., Woo, J.K., Kim, S.G., Baek, H.C., Park, Y.S., and Cho, J.G. (1999). A study on the reaction characteristics of desulfurization and denitrification in nonthermal plasma conditions, Journal of Energy Engineering, 8(1), 150-158.
  14. Young, L.H., Benson, D.R., Kameel, F.R., Pierce, J.R., Junninen, H., Kulmala, M., and Lee, S.H. (2008). Laboratory studies of $H_2SO_4/H_2O$ binary homogeneous nucleation from the $SO_2+OH$ reaction: evaluation of the experimental setup and preliminary results, Atmospheric Chemistry Physics, 8, 4997-5016. https://doi.org/10.5194/acp-8-4997-2008