DOI QR코드

DOI QR Code

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan (College of Animal Science and Technology, Shihezi University) ;
  • Qiao, Yanjie (College of Animal Science and Technology, Shihezi University) ;
  • Du, Dongdong (Analysis and Testing Center, Xinjiang Academy of Agricultural and Reclamation Science) ;
  • Wang, Jing (College of Animal Science and Technology, Shihezi University) ;
  • Ma, Xun (College of Animal Science and Technology, Shihezi University)
  • Received : 2020.05.13
  • Accepted : 2020.10.05
  • Published : 2020.11.30

Abstract

Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Keywords

Acknowledgement

We would like to acknowledge the contribution of Mogo Edit for writing assistance.

References

  1. den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C, Manuel CS, et al. Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments. Int J Syst Evol Microbiol. 2014;64(Pt 6):1882-1889. https://doi.org/10.1099/ijs.0.052720-0
  2. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Microbiol. 2015;65(Pt 1):286-292. https://doi.org/10.1099/ijs.0.070839-0
  3. de las Heras A, Cain RJ, Bielecka MK, Vazquez-Boland JA. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol. 2011;14(2):118-127. https://doi.org/10.1016/j.mib.2011.01.005
  4. Gandhi M, Chikindas ML. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 2007;113(1):1-15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  5. Quereda JJ, Pucciarelli MG. Deletion of the membrane protein Lmo0412 increases the virulence of Listeria monocytogenes. Microbes Infect. 2014;16(8):623-632. https://doi.org/10.1016/j.micinf.2014.07.002
  6. Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018;16(1):32-46. https://doi.org/10.1038/nrmicro.2017.126
  7. Lewinson O, Livnat-Levanon N. Mechanism of action of ABC importers: conservation, divergence, and physiological adaptations. J Mol Biol. 2017;429(5):606-619. https://doi.org/10.1016/j.jmb.2017.01.010
  8. Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. MicrobiologyOpen. 2017;6(5):e511.
  9. Borezee E, Pellegrini E, Berche P. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun. 2000;68(12):7069-7077. https://doi.org/10.1128/IAI.68.12.7069-7077.2000
  10. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet. 2016;48(3):308-313. https://doi.org/10.1038/ng.3501
  11. Djordjevic D, Wiedmann M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol. 2002;68(6):2950-2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
  12. Lee HY, Chai LC, Pui CF, Mustafa S, Cheah YK, Nishibuchi M, et al. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride. Braz J Microbiol. 2013;44(1):51-55. https://doi.org/10.1590/S1517-83822013005000004
  13. Peng YL, Meng QL, Qiao J, Xie K, Chen C, Liu TL, et al. The regulatory roles of ncRNA rli60 in adaptability of listeria monocytogenes to environmental stress and biofilm formation. Curr Microbiol. 2016;73(1):77-83. https://doi.org/10.1007/s00284-016-1028-6
  14. Wu Y, Li J, Qiao M, Meng D, Meng Q, Qiao J, et al. Characteristic profiles of biofilm, enterotoxins and virulence of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, China. J Vet Sci. 2019;20(6):e74. https://doi.org/10.4142/jvs.2019.20.e74
  15. Krypotou E, Scortti M, Grundstrom C, Oelker M, Luisi BF, Sauer-Eriksson AE, et al. Control of bacterial virulence through the peptide signature of the habitat. Cell Reports. 2019;26(7):1815-1827.e5. https://doi.org/10.1016/j.celrep.2019.01.073
  16. Jones MM, Johnson A, Koszelak-Rosenblum M, Kirkham C, Brauer AL, Malkowski MG, et al. Role of the oligopeptide permease ABC Transporter of Moraxella catarrhalis in nutrient acquisition and persistence in the respiratory tract. Infect Immun. 2014;82(11):4758-4766. https://doi.org/10.1128/IAI.02185-14
  17. Hopfe M, Dahlmanns T, Henrich B. In Mycoplasma hominis the OppA-mediated cytoadhesion depends on its ATPase activity. BMC Microbiol. 2011;11(1):185. https://doi.org/10.1186/1471-2180-11-185
  18. Orchard SS, Goodrich-Blair H. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease. Appl Environ Microbiol. 2004;70(9):5621-5627. https://doi.org/10.1128/AEM.70.9.5621-5627.2004
  19. Moraes PM, Seyffert N, Silva WM, Castro TL, Silva RF, Lima DD, et al. Characterization of the Opp peptide transporter of Corynebacterium pseudotuberculosis and its role in virulence and pathogenicity. BioMed Res Int. 2014;2014(1):489782.
  20. Tseng CW, Chiu CJ, Kanci A, Citti C, Rosengarten R, Browning GF, et al. The oppD gene and putative peptidase genes may be required for virulence in mycoplasma gallisepticum. Infect Immun. 2017;85(6):e00023-e17.
  21. Sievers S, Lund A, Menendez-Gil P, Nielsen A, Storm Mollerup M, Lambert Nielsen S, et al. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes. RNA Biol. 2015;12(9):985-997. https://doi.org/10.1080/15476286.2015.1071011
  22. Durack J, Ross T, Bowman JP. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One. 2013;8(9):e73603. https://doi.org/10.1371/journal.pone.0073603
  23. Lecuit M. Human listeriosis and animal models. Microbes Infect. 2007;9(10):1216-1225. https://doi.org/10.1016/j.micinf.2007.05.009
  24. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322. https://doi.org/10.1126/science.284.5418.1318
  25. Vazquez-Sanchez D, Galvao JA, Oetterer M. Contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities. J Food Sci Technol. 2017;54(12):3867-3879. https://doi.org/10.1007/s13197-017-2843-x
  26. Miao X, Liu H, Zheng Y, Guo D, Shi C, Xu Y, et al. Inhibitory effect of thymoquinone on Listeria monocytogenes ATCC 19115 biofilm formation and virulence attributes critical for human infection. Front Cell Infect Microbiol. 2019;9:304. https://doi.org/10.3389/fcimb.2019.00304