DOI QR코드

DOI QR Code

Molecular epidemiology of Aleutian mink disease virus causing outbreaks in mink farms from Southwestern Europe: a retrospective study from 2012 to 2019

  • Prieto, Alberto (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Fernandez-Antonio, Ricardo (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Lopez-Lorenzo, Gonzalo (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Diaz-Cao, Jose Manuel (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Lopez-Novo, Cynthia (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Remesar, Susana (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Panadero, Rosario (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Diaz, Pablo (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Morrondo, Patrocinio (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Diez-Banos, Pablo (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela) ;
  • Fernandez, Gonzalo (Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela)
  • 투고 : 2020.03.11
  • 심사 : 2020.06.18
  • 발행 : 2020.07.31

초록

Background: Aleutian mink disease virus (AMDV) causes major economic losses in fur-bearing animal production. The control of most AMDV outbreaks is complex due to the difficulties of establishing the source of infection based only on the available on-farm epidemiological data. In this sense, phylogenetic analysis of the strains present in a farm may help elucidate the origin of the infection and improve the control and biosecurity measures. Objectives: This study had the following aims: characterize the AMDV strains from most outbreaks produced at Spanish farms between 2012-2019 at the molecular level, and assess the utility of the combined use of molecular and epidemiological data to track the possible routes of infection. Methods: Thirty-seven strains from 17 farms were partially sequenced for the NS1 and VP2 genes and analyzed phylogenetically with other strains described worldwide. Results: Spanish AMDV strains are clustered in four major clades that generally show a good geographical correlation, confirming that most had been established in Spain a long time ago. The combined study of phylogenetic results and epidemiological information of each farm suggests that most of the AMDV outbreaks since 2012 had been produced by within-farm reservoirs, while a few of them may have been due to the introduction of the virus through international trade. Conclusions: The combination of phylogenetic inference, together with epidemiological data, helps assess the possible origin of AMDV infections in mink farms and improving the control and prevention of this disease.

키워드

과제정보

The authors want to thank the Galician Association of Mink Breeders and all farmers included in this study for their inestimable collaboration.

참고문헌

  1. Christensen LS, Gram-Hansen L, Chriel M, Jensen TH. Diversity and stability of Aleutian mink disease virus during bottleneck transitions resulting from eradication in domestic mink in Denmark. Vet Microbiol. 2011;149(1-2):64-71. https://doi.org/10.1016/j.vetmic.2010.10.016
  2. Canuti M, Whitney HG, Lang AS. Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol. 2015;6:1119. https://doi.org/10.3389/fmicb.2015.01119
  3. Bloom ME, Kanno H, Mori S, Wolfinbarger JB. Aleutian mink disease: puzzles and paradigms. Infect Agents Dis 1994;3(6):279-301.
  4. Porter DD, Larsen AE, Porter HG. Aleutian disease of mink. Adv Immunol. 1980;29:261-286. https://doi.org/10.1016/S0065-2776(08)60046-2
  5. Oleksiewicz MB, Wolfinbarger JB, Bloom ME. A comparison between permissive and restricted infections with Aleutian mink disease parvovirus (ADV): characterization of the viral protein composition at nuclear sites of virus replication. Virus Res. 1998;56(1):41-51. https://doi.org/10.1016/S0168-1702(98)00053-7
  6. Hadlow WJ, Race RE, Kennedy RC. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink. Infect Immun. 1983;41(3):1016-1023. https://doi.org/10.1128/iai.41.3.1016-1023.1983
  7. Manas S, Cena JC, Ruiz-Olmo J, Palazon S, Domingo M, Wolfinbarger JB, et al. Aleutian mink disease parvovirus in wild riparian carnivores in Spain. J Wildl Dis. 2001;37(1):138-144. https://doi.org/10.7589/0090-3558-37.1.138
  8. Fournier-Chambrillon C, Aasted B, Perrot A, Pontier D, Sauvage F, Artois M, et al. Antibodies to Aleutian mink disease parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France. J Wildl Dis. 2004;40(3):394-402. https://doi.org/10.7589/0090-3558-40.3.394
  9. Farid AH. Aleutian mink disease virus in furbearing mammals in Nova Scotia, Canada. Acta Vet Scand. 2013;55(1):10. https://doi.org/10.1186/1751-0147-55-10
  10. Olofsson A, Mittelholzer C, Treiberg Berndtsson L, Lind L, Mejerland T, Belak S. Unusual, high genetic diversity of Aleutian mink disease virus. J Clin Microbiol. 1999;37(12):4145-4149. https://doi.org/10.1128/JCM.37.12.4145-4149.1999
  11. Ryt-Hansen P, Hjulsager CK, Hagberg EE, Chriel M, Struve T, Pedersen AG, et al. Outbreak tracking of Aleutian mink disease virus (AMDV) using partial NS1 gene sequencing. Virol J. 2017;14(1):119. https://doi.org/10.1186/s12985-017-0786-5
  12. Oie KL, Durrant G, Wolfinbarger JB, Martin D, Costello F, Perryman S, et al. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J Virol. 1996;70(2):852-861. https://doi.org/10.1128/jvi.70.2.852-861.1996
  13. Best SM, Bloom ME. Aleutian mink disease parvovirus. In: Kerr JR, Cotmore SF, Bloom ME, Linden RM, Parrish CR, editors. Parvoviruses. London: Hodder Arnold; 2006, 457-471.
  14. Knuuttila A, Uzcategui N, Kankkonen J, Vapalahti O, Kinnunen P. Molecular epidemiology of Aleutian mink disease virus in Finland. Vet Microbiol. 2009;133(3):229-238. https://doi.org/10.1016/j.vetmic.2008.07.003
  15. Leimann A, Knuuttila A, Maran T, Vapalahti O, Saarma U. Molecular epidemiology of Aleutian mink disease virus (AMDV) in Estonia, and a global phylogeny of AMDV. Virus Res. 2015;199:56-61. https://doi.org/10.1016/j.virusres.2015.01.011
  16. Canuti M, O'Leary KE, Hunter BD, Spearman G, Ojkic D, Whitney HG, et al. Driving forces behind the evolution of the Aleutian mink disease parvovirus in the context of intensive farming. Virus Evol. 2016;2(1):vew004. https://doi.org/10.1093/ve/vew004
  17. Nituch LA, Bowman J, Wilson P, Schulte-Hostedde AI. Molecular epidemiology of Aleutian disease virus in free-ranging domestic, hybrid, and wild mink. Evol Appl. 2012;5(4):330-340. https://doi.org/10.1111/j.1752-4571.2011.00224.x
  18. Sang Y, Ma J, Hou Z, Zhang Y. Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes. 2012;45(1):31-37. https://doi.org/10.1007/s11262-012-0734-9
  19. Farid AH, Zillig ML, Finley GG, Smith GC. Prevalence of the Aleutian mink disease virus infection in Nova Scotia, Canada. Prev Vet Med. 2012;106(3-4):332-338. https://doi.org/10.1016/j.prevetmed.2012.03.010
  20. Cepica A, Iwamoto T. Field evaluation of CIEP and PCR detection/removal control methods of Aleutian mink disease (AD) in Canada. In: Larsen PF, Moller SH, Clausen T, Hammer AS, Lassen TM, Nielsen VH, et al., editors. Proceedings of the Xth International Scientific Congress in fur animal production. Wageningen: Wageningen Academic Publishers; 2020. 196-205.
  21. Diaz Cao JM, Prieto A, Lopez G, Fernandez-Antonio R, Diaz P, Lopez C, et al. Molecular assessment of visitor personal protective equipment contamination with the Aleutian mink disease virus and porcine circovirus-2 in mink and porcine farms. PLoS One. 2018;13(8):e0203144. https://doi.org/10.1371/journal.pone.0203144
  22. Hagberg EE, Pedersen AG, Larsen LE, Krarup A. Evolutionary analysis of whole-genome sequences confirms inter-farm transmission of Aleutian mink disease virus. J Gen Virol. 2017;98(6):1360-1371. https://doi.org/10.1099/jgv.0.000777
  23. Ryt-Hansen P, Hagberg EE, Chriel M, Struve T, Pedersen AG, Larsen LE, et al. Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs). Virol J. 2017;14(1):231. https://doi.org/10.1186/s12985-017-0898-y
  24. Kowalczyk M, Horecka B, Jakubczak A. Aleutian mink disease virus in the breeding environment in Poland and its place in the global epidemiology of AMDV. Virus Res. 2019;270:197665. https://doi.org/10.1016/j.virusres.2019.197665
  25. Prieto A, Fernandez-Antonio R, Diaz-Cao JM, Lopez G, Diaz P, Alonso JM, et al. Distribution of Aleutian mink disease virus contamination in the environment of infected mink farms. Vet Microbiol. 2017;204:59-63. https://doi.org/10.1016/j.vetmic.2017.04.013
  26. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;(41):95-98.
  27. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696-704. https://doi.org/10.1080/10635150390235520
  28. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
  29. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/sysbio/sys029
  30. Prieto A, Diaz-Cao JM, Fernandez-Antonio R, Panadero R, Diaz P, Lopez C, et al. Application of real-time PCR to detect Aleutian mink disease virus on environmental farm sources. Vet Microbiol. 2014;173(3-4):355-359. https://doi.org/10.1016/j.vetmic.2014.07.024
  31. Garcia-Mata R. El vison. Su cria en cautividad. Madrid: Mundi Prensa; 1990.
  32. Vidal-Figueroa T, Delibes M. Primeros datos sobre el vison americano (Mustela vison) en el suroeste de Galicia y noroeste de Portugal. Ecologia (Madr). 1987;1:145-152.
  33. Rodrigues DC, Simoes L, Mullins J, Lampa S, Mendes RC, Fernandes C, et al. Tracking the expansion of the American mink (Neovison vison) range in NW Portugal. Biol Invasions. 2015;17(1):13-22. https://doi.org/10.1007/s10530-014-0706-1
  34. Manas S, Gomez A, Asensio V, Palazon S, Podra M, Alarcia OE, et al. Prevalence of antibody to Aleutian mink disease virus in European mink (Mustela lutreola) and American mink (Neovison vison) in Spain. J Wildl Dis. 2016;52(1):22-32. https://doi.org/10.7589/2015-04-082
  35. Virtanen J, Smura T, Aaltonen K, Moisander-Jylha AM, Knuuttila A, Vapalahti O, et al. Co-circulation of highly diverse Aleutian mink disease virus strains in Finland. J Gen Virol. 2019;100(2):227-236. https://doi.org/10.1099/jgv.0.001187