DOI QR코드

DOI QR Code

Westerdykella reniformis: A New Record from Field Soils in Korea

  • Adhikari, Mahesh (Division of Biological Resource Sciences, Kangwon National University) ;
  • Kim, Sang Woo (Division of Biological Resource Sciences, Kangwon National University) ;
  • Gwon, Byeong Heon (Division of Biological Resource Sciences, Kangwon National University) ;
  • Ju, Han Jun (Division of Biological Resource Sciences, Kangwon National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Youn Su (Division of Biological Resource Sciences, Kangwon National University)
  • Received : 2020.02.27
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

During a survey of fungal diversity in different provinces of South Korea in 2017, a new fungal isolate was discovered. This fungal isolate was identified as Westerdykella reniformis, based on its morphological characteristics and phylogenetic analysis, using internal transcribed spacer (ITS) and 28S ribosomal DNA (28S rDNA) sequence data. To our knowledge, W. reniformis has not previously been reported in South Korea. Thus, in this study, we report a new record of a species from the Dothideomycetes class in Korea, and provide a detailed description with morphological illustrations.

Keywords

References

  1. Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, De Gruyter J, De Hoog GS, Dixon LJ, Grube M, Gueidan C, et al. A class-wide phylogenetic assessment of Dothideomycetes. Studies in mycology 2009;1:64:1-5.
  2. El-Sharouny H, Gherbawy YAMH, Abdel-Aziz F. Fungal diversity in brackish and saline lakes in Egypt. Nova Hedwigia 2009;89:437-50. https://doi.org/10.1127/0029-5035/2009/0089-0437
  3. Ebead GA, Overy DP, Berrue F, Kerr RG. Westerdykella reniformis sp. nov., producing the antibiotic metabolites melinacidin IV and chetracin B. IMA fungus 2012;32:189-201.
  4. Kruys A, Wedin M. Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilizing multi-gene phylogenies. Systematics and Biodiversity 2009;7:465-78. https://doi.org/10.1017/S1477200009990119
  5. Lee YS, Jung HY, Lee HB, Kim SH, Shin KS, Eom AH, Kim C, Lee SY. National list of species of Korea. Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota. Incheon: National Institute of Biological Resources; 2015.
  6. Davet P, Rouxel F. Detection and isolation of soil fungi. Enfield (NH): Science Publishers; 2000.
  7. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: A guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
  8. LoBuglio KF, Rogers SO, Wang CJK. Variation in ribosomal DNA among isolates of the mycorrhizal fungus Cenococcum geophilum. Can J Bot 1991;69:2331-43. https://doi.org/10.1139/b91-294
  9. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  10. Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197