DOI QR코드

DOI QR Code

Effect of Trametes cubensis Extract on Vascular Function of Bovine Aortic Endothelial Cells

Trametes cubensis 버섯 추출물이 소의 대동맥 내피세포의 혈관 기능에 미치는 효능

  • Jang, Sujeong (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Dong Hyeung (Department of Microbiology, Dankook University) ;
  • Kim, Seong Hwan (Department of Microbiology, Dankook University) ;
  • Park, Heonyong (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
  • 장수정 (단국대학교 분자생물학과/나노센서바이오텍연구소) ;
  • 이동형 (단국대학교 미생물학과) ;
  • 김성환 (단국대학교 미생물학과) ;
  • 박헌용 (단국대학교 분자생물학과/나노센서바이오텍연구소)
  • Received : 2019.12.26
  • Accepted : 2020.03.27
  • Published : 2020.03.31

Abstract

Mushrooms have been extensively used as traditional medicines to treat cancer and inflammatory diseases. In this study, we examined whether Trametes cubensis extract (TCE) exerted beneficial effects on cardiovascular function. First, we demonstrated that TCE was non-cytotoxic and enhanced cell proliferation of bovine aortic endothelial cells (BAEC). Moreover, TCE induced cell migration and blocked lipopolysaccharide-induced adhesion of monocytes to BAEC. We performed a variety of cell signaling studies, showing that TCE activates p38 MAPK and generates reactive oxygen species (ROS). Our results showed that TCE-induced vascular functions were mediated by p38 MAPK, but not by ROS. These results provide insights into bio-medical applications of TCE as a preventive or therapeutic agent for treating cardiovascular diseases including atherosclerosis.

버섯은 예로부터 암과 염증 질환의 약재로써 많이 사용되어왔다. Trametes cubensis 버섯종은 현재까지 많은 연구가 이루어지지 않았고, 형태학적 특성만 알려져 있고 효능에 관한 연구 보고가 미흡한 실정이다. 따라서 본 연구에서는 T. cubensis 균사체 추출물(Trametes cubensis extract, TCE)의 혈관생리학적 효능을 알아보기 위해 세포와 분자수준에서의 연구를 수행하였다. 먼저 TCE를 처리하였을 때, 세포 독성은 없었고 세포성장을 촉진시켰다. 또한 세포이동이 TCE에 의해 증가하는 것을 확인하였다. 다음으로 LPS (Lipopolysaccharide)에 의해 유도된 THP-1 세포의 내피세포 부착이 TCE에 의해 억제되는 것을 확인하였다. 또한 세포신호전달 경로 분석을 한 결과, TCE에 의해 활성산소가 증가하였으며, Akt억제를 통하여 p38 MAPK가 활성화되었다. 그리고 TCE가 촉발하는 세포성장, 세포이동, 단핵구 부착 등은 p38 MAPK (mitogen-activated protein kinase)에 의해 조절되었으며, 활성산소와는 관련이 없었다. 결론적으로, TCE는 세포성장, 세포이동, 단핵구 부착을 조절하였으며, 이는 TCE가 동맥경화와 같은 심혈관계 질환의 예방 및 치료제 혹은 혈관기능개선제로 개발될 가능성이 있음을 암시한다.

Keywords

References

  1. Aida M, Shuhaimi M, Yazid M, Maaruf AG. Mushroom as a potential source of prebiotics: A review. Trends in Food Sci Technol 2009;20:567-75. https://doi.org/10.1016/j.tifs.2009.07.007
  2. Roy A. Studies on Indian polypores. V. Morphological and cultural characters of Trametes cubensis. Can J Bot 1982;60:1012-15. https://doi.org/10.1139/b82-126
  3. Walder R, Kalvatchev Z, Garzaro D, Barrios M. 1996. In vitro activity of extracts from polyporaceae against human immunodeficiency virus type 1. Phytother Res 1996;10:497-503. https://doi.org/10.1002/(SICI)1099-1573(199609)10:6<497::AID-PTR892>3.0.CO;2-V
  4. Kothari V, Seshadri S. In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica. Biol Res 2010;43:165-8. https://doi.org/10.4067/S0716-97602010000200003
  5. Halpern M, Raats D, Lev-Yadun S. The potential anti-herbivory role of microoganisms on plant thorns. Plant Signaling & Behavior 2007;2:503-4. https://doi.org/10.4161/psb.2.6.4608
  6. Pereina E, Barros L, Martins A, Ferreira I. Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food chem 2012;130:394-403. https://doi.org/10.1016/j.foodchem.2011.07.057
  7. Abdel AM. The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt. IMA Fungus 2010;1:123-42. https://doi.org/10.5598/imafungus.2010.01.02.04
  8. Abguri DA, McElhenney WH. Extraction of total phenolic and flavonoids from edible wild and cultivated medicinal mushrooms as affected by different solvents. J Nat Prod Plant Resour 2013;3:37-42.
  9. Dembitsky VM. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014;21:1559-81. https://doi.org/10.1016/j.phymed.2014.07.005
  10. Valverde ME, Hernandez-Perez T, Paredes-Lopez O. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol 2015;2015:376387. https://doi.org/10.1155/2015/376387
  11. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav 2008;94:276-84. https://doi.org/10.1016/j.physbeh.2007.11.045
  12. Mizuno M, Morimoto M, Minato K, Tsuchida H. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 1998;62:434-37. https://doi.org/10.1271/bbb.62.434
  13. de Boer OJ, van der Wal AC, Becker AE. Atherosclerosis, inflammation, and infection. J Pathol 2000;190:237-43. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<237::AID-PATH541>3.0.CO;2-N
  14. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104:503-16. https://doi.org/10.1016/S0092-8674(01)00238-0
  15. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-95. https://doi.org/10.1056/NEJMra043430
  16. Lamalice L, Le Boeuf F, Hout J. Endothelial cell migration during angiogenesis. Circ Res 2007;100:782-94. https://doi.org/10.1161/01.RES.0000259593.07661.1e
  17. Diaz-Gonzalez F, Sanchez-Madrid F. Inhibition of leukocyte adhesion: An alternative mechanism of action for anti-inflammatory drugs. Immunol Today 1998;19:169-72. https://doi.org/10.1016/S0167-5699(97)01216-4
  18. Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436-45. https://doi.org/10.1056/NEJM199802123380706
  19. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm 2014;2014:805841. https://doi.org/10.1155/2014/805841
  20. Park H, Go YM, St John PL, Maland MC, Lisanti MP, Abrahamson DR, Jo H. Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 1998;273:32304-11. https://doi.org/10.1074/jbc.273.48.32304
  21. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res 2002;12:311-20. https://doi.org/10.1038/sj.cr.7290133
  22. Maier JA, Voulalas P, Roeder D, Maciag T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 1990;249:1570-4. https://doi.org/10.1126/science.2218499
  23. Cho J, Kim S, Seo J, Ahn S, Jeong E, Park H. Novel function of lycopene in vascular endothelial cell. K J Life Sci 2010;20:1093-99. https://doi.org/10.5352/JLS.2010.20.7.1093
  24. Seo Y, Park J, Choi W, Son DJ, Kim YS, Kim MK, Yoon BE, Pyee J, Hong JT, Go YM, et al. Antiatherogenic effect of resveratrol attributed to decreased expression of ICAM-1 (intercellular adhesion molecule-1). Arterioscler Thromb Vasc Biol 2019;39:675-84. https://doi.org/10.1161/ATVBAHA.118.312201
  25. Go YM, Boo YC, Park H, Maland MC, Patel R, Pritchard Jr KA, Fujio Y, Walsh K, Darley-Usmar V, Jo H. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol 1985;91:1574-81.