References
- Park SJ, Beak S-H, Jung DJS, et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle-a review. Asian-Australas J Anim Sci 2018;31:1043-61. https://doi.org/10.5713/ajas.18.0310
- Lane MD, Tang QQ. From multipotent stem cell to adipocyte. Birth Defects Res A Clin Mol Teratol 2005;73:476-7. https://doi.org/10.1002/bdra.20150
- Smith SB, Gill CA, Lunt DK, Brooks MA. Regulation of fat and fatty acid composition in beef cattle. Asian-Australas J Anim Sci 2009;22:1225-33. https://doi.org/10.5713/ajas.2009.r.10
-
Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor
${\beta}/{\delta}$ and retinoic acid receptor. Mol Cell Biol 2009;29:3286-96. https://doi.org/10.1128/MCB.01742-08 - Du M, Huang Y, Das AK, et al. Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2013;91:1419-27. https://doi.org/10.2527/jas.2012-5670
- Yang QY, Liang JF, Rogers CJ, Zhao JX, Zhu MJ, Du M. Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 2013;62:3727-35. https://doi.org/10.2337/db13-0433
- Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients 2014;6:2165-78. https://doi.org/10.3390/nu6062165
- Dani C, Smith A, Dessolin S, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 1997;110:1279-85. https://doi.org/10.1242/jcs.110.11.1279
- National Institute of Animal Science. Korean feeding standard for Hanwoo (Korean native cattle). Jeonju, Korea: NIAS; 2017.
- Peng DQ, Lee JS, Kim WS, et al. Effect of vitamin A restriction on carcass traits and blood metabolites in Korean native steers. Anim Prod Sci 2018;39:2138-46. https://doi.org/10.1071/AN17733
- Kim W, Ghassemi Nejad J, Peng DQ, et al. Identification of heat shock protein gene expression in hair follicles as a novel indicator of heat stress in beef calves. Animal 2020 Feb 10 [Epub]. https://doi.org/10.1017/S1751731120000075
- National Academies of Sciences E, Medicine. Nutrient requirements of beef cattle. Washington, DC, USA: National Acdemy Press; 2016.
- Calderon F, Chauveau-Duriot B, Martin B, Graulet B, Doreau M, Noziere P. Variations in carotenoids, vitamins A and E, and color in cow's plasma and milk during late pregnancy and the first three months of lactation. J Dairy Sci 2007;90:2335-46. https://doi.org/10.3168/jds.2006-630
- Prior RL, Laster DB. Development of the bovine fetus. J Anim Sci 1979;48:1546-53. https://doi.org/10.2527/jas1979.4861546x
- Li Y, Wongsiriroj N, Blaner WS. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg Nutr 2014;3:126-39. https://doi.org/10.3978/j.issn.2304-3881.2014.05.04
- Ferrell C, Garrett W, Hinman N. Growth, development and composition of the udder and gravid uterus of beef heifers during pregnancy. J Anim Sci 1976;42:1477-89. https://doi.org/10.2527/jas1976.4261477x
- Van der Lugt JJ, Prozesky L. The pathology of blindness in new-born calves caused by hypovitaminosis A. Onderstepoort J Vet Res 1989; 56:99-109.
- Oka A, Maruo Y, Miki T, Yamasaki T, Saito T. Influence of vitamin A on the quality of beef from the Tajima strain of Japanese Black cattle. Meat Sci 1998;48:159-67. https://doi.org/10.1016/S0309-1740(97)00086-7
- Bailey E. Vitamins for beef cattle [Internet]. University of Missouri Extension 2017 [cited 2017 Nov]. Available from: https://extension2.missouri.edu/g2058
- Franklin ST, Sorenson CE, Hammell DC. Influence of vitamin A supplementation in milk on growth, health, concentrations of vitamins in plasma, and immune parameters of calves. J Dairy Sci 1998;81:2623-32. https://doi.org/10.3168/jds.S0022-0302(98)75820-5
- Burris MJ, Blunn CT. Some factors affecting gestation length and birth weight of beef cattle. J Anim Sci 1952;11:34-41. https://doi.org/10.2527/jas1952.11134x
- Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 2011;124:3654-64. https://doi.org/10.1242/jcs.086629
- Kim DM, Choi HR, Park A, et al. Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2013;434:455-9. https://doi.org/10.1016/j.bbrc.2013.03.095
- Borello U, Berarducci B, Murphy P, et al. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 2006;133:3723-32. https://doi.org/10.1242/dev.02517
- Bedo G, Santisteban P, Aranda A. Retinoic acid regulates growth hormone gene expression. Nature 1989;339:231-4. https://doi.org/10.1038/339231a0
- Russell RG, Oteruelo F. An ultrastructural study of the dufferentiation of skeletal muscle in the bovine fetus. Anat Embryol 1981;162:403-17. https://doi.org/10.1007/BF00301866
- Robelin J, Lacourt A, Bechet D, Ferrara M, Briand Y, Geay Y. Muscle differentiation in the bovine fetus: a histological and histochemical approach. Growth Dev Aging 1991;55:151-60.
-
Banerjee SS, Feinberg MW, Watanabe M, et al. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-
${\gamma}$ expression and adipogenesis. J Biol Chem 2003; 278:2581-4. https://doi.org/10.1074/jbc.M210859200 - Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol 2013;373:235-43. https://doi.org/10.1016/j.ydbio.2012.10.031
-
Farmer S. Regulation of PPAR
${\gamma}$ activity during adipogenesis. Int J Obes 2005;29:S13-6. https://doi.org/10.1038/sj.ijo.080 2907 -
Verma NK, Singh J, Dey CS. PPAR-
${\gamma}$ expression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol 2004;143:1006-13. https://doi.org/10.1038/sj.bjp.0706002 - Loviscach M, Rehman N, Carter L, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000;43:304-11. https://doi.org/10.1007/s001250 050048
- Amin RH, Mathews ST, Camp HS, Ding L, Leff T. Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab 2010;298:E28-37. https://doi.org/10.1152/ajpendo.00446.2009
- Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 2002;361:621-7. https://doi.org/10.1042/bj3610621
- Zubiria MG, Alzamendi A, Moreno G, et al. Relationship between the balance of hypertrophic/hyperplastic adipose tissue expansion and the metabolic profile in a high glucocorticoids model. Nutrients 2016;8:410. https://doi.org/10.3390/nu8070410
- Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N. Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 2012;61:1112-21. https://doi.org/10.2337/db11-1620
Cited by
- Vitamin A regulates intramuscular adipose tissue and muscle development: promoting high-quality beef production vol.12, pp.1, 2021, https://doi.org/10.1186/s40104-021-00558-2