DOI QR코드

DOI QR Code

Amino acid requirements in horses

  • Mok, Chan Hee (Department of Animal and Food Sciences, University of Kentucky) ;
  • Urschel, Kristine L. (Department of Animal and Food Sciences, University of Kentucky)
  • Received : 2020.01.30
  • Accepted : 2020.03.12
  • Published : 2020.05.01

Abstract

Evaluating amino acid requirements, specifically threonine requirements, in horses will enable better feed formulation and result in economic production, improved animal health, and reduced environmental pollution. However, the current knowledge of protein and amino acid requirements in horses is still limited. Because horses have a unique digestive system and consume a variety of feed ingredients, their protein digestibility may be affected than other species by different feed composition, and thus amino acid requirements are susceptible to vary between situations. Therefore, a careful evaluation of amino acid requirements with a proper method is needed for various conditions. This review will also provide comprehensive information that needs to be considered when designing an amino acid requirement study in horses.

Keywords

References

  1. Graham PM, Ott EA, Brendemuhl JH, TenBroeck SH. The effect of supplemental lysine and threonine on growth and development of yearling horses. J Anim Sci 1994;72:380-6. https://doi.org/10.2527/1994.722380x
  2. Graham-Thiers PM, Kronfeld DS. Amino acid supplementation improves muscle mass in aged and young horses. J Anim Sci 2005;83:2783-8. https://doi.org/10.2527/2005.83122783x
  3. Tanner SL, Wagner AL, Digianantonio RN, Harris PA, Sylvester JT, Urschel KL. Dietary crude protein intake influences rates of whole-body protein synthesis in weanling horses. Vet J 2014;202:236-43. https://doi.org/10.1016/j.tvjl.2014.06.002
  4. Committee on Nutrient Requirements of Horses, National Research Council. Nutrient requirements of Horses. 6th ed. Washington, DC, USA: National Academy Press; 2007.
  5. Committee on Nutrient Requirements of Horses, National Research Council. Nutrient requirements of horses. 5th ed. Washington, DC, USA: National Academy Press; 1989.
  6. Sticker LS, Thompson Jr. DL, Bunting LD, Fernandez JM, DePew CL. Dietary protein and(or) energy restriction in mares: plasma glucose, insulin, nonesterified fatty acid, and urea nitrogen responses to feeding, glucose, and epinephrine. J Anim Sci 1995;73:136-44. https://doi.org/10.2527/1995.731136x
  7. Bryden W. Amino acid requirements of horses estimated from tissue composition. In: Proceedings of the Nutrition Society of Australia 1991: Danvers, MA, USA: HEC Press; 1991. Vol 16. p. 53.
  8. Ott EA, Kivipelto J. Growth and development of yearling horses fed either alfalfa or coastal bermudagrass: hay and a concentrate formulated for bermudagrass hay. J Equine Vet Sci 2002;22:311-9. https://doi.org/10.1016/S0737-0806(02)70079-8
  9. van Niekerk FE, van Niekerk CH. The effect of dietary protein on reproduction in the mare. II. Growth of foals, body mass of mares and serum protein concentration of mares during the anovulatory, transitional and pregnant periods. J S Afr Vet Assoc 1997;68:81-5. https://doi.org/10.4102/jsava.v68i3.881
  10. van Niekerk FE, van Niekerk CH. The effect of dietary protein on reproduction in the mare. III. Ovarian and uterine changes during the anovulatory, transitional and ovulatory periods in the non-pregnant mare. J S Afr Vet Assoc 1997;68:86-92. https://doi.org/10.4102/jsava.v68i3.882
  11. Martin RG, McMeniman NP, Dowsett KF. Effects of a protein deficient diet and urea supplementation on lactating mares. J Reprod Fertil Suppl 1991;44:543-50.
  12. Reid JT. Urea as a protein replacement for ruminants: a review. J Dairy Sci 1953;36:955-96. https://doi.org/10.3168/jds.S0022-0302(53)91586-0
  13. Reitnour CM, Treece JM. Relationship of nitrogen source to certain blood components and nitrogen balance in the equine. J Anim Sci 1971;32:487-90. https://doi.org/10.2527/jas1971.323487x
  14. Rusoff LL, Lank RB, Spillman TE, Elliot HB. Non-toxicity of urea feeding to horses. Vet Med Small Anim Clin 1965;60:1123-6.
  15. Slade LM, Robinson DW, Casey KE. Nitrogen metabolism in nonruminant herbivores. I. The influence of nonprotein nitrogen and protein quality on the nitrogen retention of adult mares. J Anim Sci 1970;30:753-60. https://doi.org/10.2527/jas1970.305753x
  16. Maczulak AE, Dawson KA, Baker JP. Nitrogen utilization in bacterial isolates from the equine cecum. Appl Environ Microbiol 1985;50:1439-43. https://doi.org/10.1128/aem.50.6.1439-1443.1985
  17. Hintz HF, Lowe JE, Clifford AJ, Visek WJ. Ammonia intoxication resulting from urea ingestion by ponies. J Am Vet Med Assoc 1970;157:963-6.
  18. Ott EA, Asquith RL, Feaster JP. Lysine supplementation of diets for yearling horses. J Anim Sci 1981;53:1496-503. https://doi.org/10.2527/jas1982.5361496x
  19. Potter GD, Huchton JD. Growth of yearling horses fed different sources of protein with supplemental lysine. In: Proceedings of the 4th Equine Nutrition and Physiology Society Symposium. 1975. p. 19-20.
  20. Bott RC, Greene EA, Trottier NL, et al. Environmental implications of nitrogen output on horse operations: a review. J Equine Vet Sci 2016;45:98-106. https://doi.org/10.1016/j.jevs.2015.08.019
  21. Harper M, Swinker A, Staniar W, Welker A. Ration evaluation of Chesapeake Bay watershed horse farms from a nutrient management perspective. J Equine Vet Sci 2009;29:401-2. https://doi.org/10.1016/j.jevs.2009.04.101
  22. Olsman AF, Jansen WL, Sloet van Oldruitenborgh-Oosterbaan MM, Beynen AC. Assessment of the minimum protein requirement of adult ponies. J Anim Physiol Anim Nutr (Berl) 2003;87:205-12. https://doi.org/10.1046/j.1439-0396.2003.00414.x
  23. Committee on Animal Nutrition, National Research Council. Air emissions from animal feeding operations: current knowledge, future needs.Washington, DC, USA: National Academy Press; 2003.
  24. Pickrell JA. Hazards in confinement housing: gases and dusts in confined animal houses for swine, poultry, horses and humans. Vet Hum Toxicol 1991;33:32-9.
  25. Le Bellego L, van Milgen J, Dubois S, Noblet J. Energy utilization of low-protein diets in growing pigs. J Anim Sci 2001;79:1259-71. https://doi.org/10.2527/2001.7951259x
  26. Leheska JM, Wulf DM, Clapper JA, Thaler RC, Maddock RJ. Effects of high-protein/low-carbohydrate swine diets during the final finishing phase on pork muscle quality. J Anim Sci 2002;80:137-42. https://doi.org/10.2527/2002.801137x
  27. Connysson M, Muhonen S, Lindberg JE, et al. Effects on exercise response, fluid and acid-base balance of protein intake from forage-only diets in standardbred horses. Equine Vet J Suppl 2006;38:648-53. https://doi.org/10.1111/j.2042-3306.2006.tb05620.x
  28. Graham-Thiers PM, Kronfeld DS, Kline KA. Dietary protein influences acid-base responses to repeated sprints. Equine Vet J Suppl 1999;31:463-7. https://doi.org/10.1111/j.2042-3306.1999.tb05266.x
  29. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. Baltimore, MD, USA: Lippincott Williams & Wilkins; 2010.
  30. Kern DL, Slyter LL, Leffel EC, Weaver JM, Oltjen RR. Ponies vs. steers: microbial and chemical characteristics of intestinal ingesta. J Anim Sci 1974;38:559-64. https://doi.org/10.2527/jas1974.383559x
  31. Gibbs PG, Potter GD, Schelling GT, Kreider JL, Boyd CL. Digestion of hay protein in different segments of the equine digestive tract. J Anim Sci 1988;66:400-6. https://doi.org/10.2527/jas1988.662400x
  32. Reitnour CM, Salsbury RL. Digestion and utilization of cecally infused protein by the equine. J Anim Sci 1972;35:1190-3. https://doi.org/10.2527/jas1972.3561190x
  33. Woodward AD, Holcombe SJ, Steibel JP, Staniar WB, Colvin C, Trottier NL. Cationic and neutral amino acid transporter transcript abundances are differentially expressed in the equine intestinal tract. J Anim Sci 2010;88:1028-33. https://doi.org/10.2527/jas.2009-2406
  34. Glade MJ. Nitrogen partitioning along the equine digestive tract. J Anim Sci 1983;57:943-53. https://doi.org/10.2527/jas1983.574943x
  35. Ganapathy V, Brandsch M, Leibach FH. Intestinal transport of amino acids and peptides. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York, NY, USA: Raven Press; 1994. p. 1773-94.
  36. McMeniman NP, Elliott R, Groenendyk S, Dowsett KF. Synthesis and absorption of cysteine from the hindgut of the horse. Equine Vet J 1987;19:192-4. https://doi.org/10.1111/j.2042-3306.1987.tb01374.x
  37. Slade LM, Bishop R, Morris JG, Robinson DW. Digestion and absorption of 15N-labelled microbial protein in the large intestine of the horse. Br Vet J 1971;127:11-3. https://doi.org/10.1016/S0007-1935(17)37583-8
  38. Reitnour CM, Salsbury RL. Effect of oral or caecal administration of protein supplements on equine plasma amino acids. Br Vet J 1975;131:466-73. https://doi.org/10.1016/S0007-1935(17)35242-9
  39. Freeman DE, Donawick WJ. In vitro transport of cycloleucine by equine cecal mucosa. Am J Vet Res 1991;52:539-42.
  40. Freeman DE, Kleinzeller A, Donawick WJ, Topkis VA. In vitro transport of L-alanine by equine cecal mucosa. Am J Vet Res 1989;50:2138-44.
  41. Woodward AD, Fan MZ, Geor RJ, McCutcheon LJ, Taylor NP, Trottier NL. Characterization of L-lysine transport across equine and porcine jejunal and colonic brush border membrane. J Anim Sci 2012;90:853-62. https://doi.org/10.2527/jas.2011-4210
  42. Lewis AJ, Bayley HS. Amino acid bioavailability. In: Ammerman CB, Baker DH, Lewis AJ, editors. Bioavailability of nutrients for animals, amino acids, minerals, and vitamins. New York, NY, USA: Academic Press; 1995. p. 35-65.
  43. Stein HH, Seve B, Fuller MF, et al. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci 2007;85:172-80. https://doi.org/10.2527/jas.2005-742
  44. Nyachoti CM, de Lange CFM, McBride BW, Schulze H. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can J Anim Sci 1997;77:149-63. https://doi.org/10.4141/A96-044
  45. Satchithanandam S, Vargofcak-Apker M, Calvert RJ, Leeds AR, Cassidy MM. Alteration of gastrointestinal mucin by fiber feeding in rats. J Nutr 1990;120:1179-84. https://doi.org/10.1093/jn/120.10.1179
  46. Myrie SB, Bertolo RF, Sauer WC, Ball RO. Effect of common antinutritive factors and fibrous feedstuffs in pig diets on amino acid digestibilities with special emphasis on threonine. J Anim Sci 2008;86:609-19. https://doi.org/10.2527/jas.2006-793
  47. Jansman AJM, Smink W, Van Leeuwen P, Rademacher M. Evaluation through literature data of the amount and amino acid composition of basal endogenous crude protein at the terminal ileum of pigs. Anim Feed Sci Techol 2002;98:49-60. https://doi.org/10.1016/S0377-8401(02)00015-9
  48. Zhang W, Li D, Liu L, et al. The effects of dietary fiber level on nutrient digestibility in growing pigs. J Anim Sci Biotechnol 2013;4:17. https://doi.org/10.1186/2049-1891-4-17
  49. Rosenfeld I, Austbo D. Effect of type of grain and feed processing on gastrointestinal retention times in horses. J Anim Sci 2009;87:3991-6. https://doi.org/10.2527/jas.2008-1150
  50. Farley EB, Potter GD, Gibbs PG, Schumacher J, Murray-Gerzik M. Digestion of soybean meal proteinin the equine small and large intestine at various levels of intake. J Equine Vet Sci 1995;15:391-7. https://doi.org/10.1016/S0737-0806(07)80483-7
  51. Hintz HF, Schryver HF, Lowe JE. Comparison of a blend of milk products and linseed meal as protein supplements for young growing horses. J Anim Sci 1971;33:1274-7. https://doi.org/10.2527/jas1971.3361274x
  52. Latham CM, Wagner AL, Urschel KL. Effects of dietary amino acid supplementation on measures of whole-body and muscle protein metabolism in aged horses. J Anim Physiol Anim Nutr (Berl) 2019;103:283-94. https://doi.org/10.1111/jpn.12992
  53. Yoshida T, Ohta Y. Estimation of dietary threonine requirement using plasma amino acid concentrations in mature thoroughbreds. Anim Sci J 2018;89:625-7. https://doi.org/10.1111/asj.12975
  54. Mok CH, Levesque CL, Urschel KL. Using the indicator amino acid oxidation technique to study threonine requirements in horses receiving a predominantly forage diet. J Anim Physiol Anim Nutr (Berl) 2018;102:1366-81. https://doi.org/10.1111/jpn.12927
  55. Simic P, Willuhn J, Sahm H, Eggeling L. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 2002;68:3321-7. http://doi.org/10.1128/AEM.68.7.3321-3327.2002
  56. Lodish H, Berk A, Zipursky SL, et al. Section 3.2, Folding, modification, and degradation of proteins. In: Freeman WH, editor. Molecular cell biology. 4th ed. New York, NY, USA: WH Freeman; 2002.
  57. Pawson T, Scott JD. Protein phosphorylation in signaling-50 years and counting. Trends Biochem Sci 2005;30:286-90. https://doi.org/10.1016/j.tibs.2005.04.013
  58. van Der Schoor SRD, Reeds PJ, Stoll B, et al. The high metabolic cost of a functional gut. Gastroenterology 2002;123:1931-40. https://doi.org/10.1053/gast.2002.37062
  59. Fukuda M, Tsuboi S. Mucin-type O-glycans and leukosialin. Biochim Biophys Acta 1999;1455:205-17. https://doi.org/10.1016/S0925-4439(99)00067-8
  60. Lien KA, Sauer WC, Fenton M. Mucin output in ileal digesta of pigs fed a protein-free diet. Z Ernahrungswiss 1997;36:182-90. https://doi.org/10.1007/BF01611398
  61. Voet D, Voet JG. Biochemistry. 4th Ed. NewYork, NY, USA: John Wiley& Sons Inc; 2010.
  62. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 2013;45:463-77. https://doi.org/10.1007/s00726-013-1493-1
  63. Ballevre O, Houlier ML, Prugnaud J, et al. Altered partition of threonine metabolism in pigs by protein-free feeding or starvation. Am J Physiol 1991;261:E748-57. https://doi.org/10.1152/ajpendo.1991.261.6.E748
  64. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990;1:228-37. https://doi.org/10.1016/0955-2863(90)90070-2
  65. Lafitte G. Structure of the gastrointestinal mucus layer and implications for controlled release and delivery of functional food ingredients. In: Garti N, editor. Delivery and controlled release of bioactives in foods and nutraceuticals. New York, NY, USA: CRC Press; 2008. p. 26-52.
  66. Almeida FQ, Valdares Filho SC, Donzele JL, et al. Prececal digestibility of amino acids in diets for horses. In: Proceedings of the 16th Equine Nutrition and Physiology Symposium; 1999. p. 274-9.
  67. Hendriks WH, Moughan PJ, Tarttelin MF. Gut endogenous nitrogen and amino acid excretions in adult domestic cats fed a protein-free diet or an enzymatically hydrolyzed casein-based diet. J Nutr 1996;126:955-62. https://doi.org/10.1093/jn/126.4.955
  68. Bertolo RFP, Chen CZL, Law G, Pencharz PB, Ball RO. Threonine requirement of neonatal piglets receiving total parenteral nutrition is considerably lower than that of piglets receiving an identical diet intragastrically. J Nutr 1998;128:1752-9. https://doi.org/10.1093/jn/128.10.1752
  69. Ettle T, Roth-Maier DA, Bartelt J, Roth FX. Requirement of true ileal digestible threonine of growing and finishing pigs. J Anim Physiol Anim Nutr (Berl) 2004;88:211-22. https://doi.org/10.1111/j.1439-0396.2004.00475.x
  70. Levesque CL, Moehn S, Pencharz PB, Ball RO. The threonine requirement of sows increases in late gestation. J Anim Sci 2011;89:93-102. https://doi.org/10.2527/jas.2010-2823
  71. Ji F, Hurley WL, Kim SW. Characterization of mammary gland development in pregnant gilts. J Anim Sci 2006;84:579-87. https://doi.org/10.2527/2006.843579x
  72. Kim SW, Baker DH, Easter RA. Dynamic ideal protein and limiting amino acids for lactating sows: the impact of amino acid mobilization. J Anim Sci 2001;79:2356-66. https://doi.org/10.2527/2001.7992356x
  73. Said AK, Hegsted DM, Hayes KC. Response of adult rats to deficiencies of different essential amino acids. Br J Nutr 1974;31:47-57. https://doi.org/10.1079/BJN19740007
  74. Block RJ, Bolling D. Nutritional opportunities with amino acids. J Am Diet Assoc 1944;20:69-76.
  75. Baker DH. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. J Nutr 1986;116:2339-49. https://doi.org/10.1093/jn/116.12. 2339
  76. Zello GA, Wykes LJ, Ball RO, Pencharz PB. Recent advances in methods of assessing dietary amino acid requirements for adult humans. J Nutr 1995;125:2907-15. https://doi.org/10.1093/jn/125.12.2907
  77. Beach EF, Bernstein SS, Macy IG. Intake of amino acids by breast-milk-fed infants and amino acid composition of cow's milk and human milk. J Pediatr 1941;19:190-200. https://doi.org/10.1016/S0022-3476(41)80061-4
  78. Schryver HF, Meakim DW, Lowe JE, Williams J, Soderholm LV, Hintz HF. Growth and calcium metabolism in horses fed varying levels of protein. Equine Vet J 1987;19:280-7. https://doi.org/10.1111/j.2042-3306.1987.tb01410.x
  79. Staniar WB, Kronfeld DS, Wilson JA, Lawrence LA, Cooper WL, Harris PA. Growth of thoroughbreds fed a low-protein supplement fortified with lysine and threonine. J Anim Sci 2001;79:2143-51. https://doi.org/10.2527/2001.7982143x
  80. Hegsted DM. Balance studies. J Nutr 1976;106:307-11. https://doi.org/10.1093/jn/106.3.307
  81. Rand WM, Young VR, Scrimshaw NS. Change of urinary nitrogen excretion in response to low-protein diets in adults. Am J Clin Nutr 1976;29:639-44. https://doi.org/10.1093/ajcn/ 29.6.639
  82. Ellis AD, Hill J. Nutritional physiology of the horse. Nottingham, UK: Nottingham University Press; 2005.
  83. Antilley TJ, Potter GD, Gibbs PG, Scott BD, Claborn LD. Evaluating the technique of using nitrogen retention as a response criterion for amino acid studies in the horse. J Equine Vet Sci 2007;27:525-30. https://doi.org/10.1016/j.jevs.2007.10.012
  84. Ohta Y, Yoshida T, Ishibashi T. Estimation of dietary lysine requirement using plasma amino acid concentrations in mature thoroughbreds. Anim Sci J 2007;78:41-6. https://doi.org/10.1111/j.1740-0929.2006.00402.x
  85. Hackl S, van den Hoven R, Zickl M, Spona J, Zentek J. Individual differences and repeatability of post-prandial changes of plasma-free amino acids in young horses. J Vet Med A Physiol Pathol Clin Med 2006;53:439-44. https://doi.org/10.1111/j.1439-0442.2006.00862.x
  86. McMenamy RH, Lund CC, Oncley JL. Unbound amino acid concentrations in human blood plasmas. J Clin Invest 1957;36:1672-9. https://doi.org/10.1172/JCI103568
  87. Taylor YSM, Scrimshaw NS, Young VR. The relationship between serum urea levels and dietary nitrogen utilization in young men. Br J Nutr 1974;32:407-11. https://doi.org/10.1079/BJN19740092
  88. Pencharz PB, Ball RO. Different approaches to define individual amino acid requirements. Annu Rev Nutr 2003;23:101-16. https://doi.org/10.1146/annurev.nutr.23.011702.073247
  89. Eggum BO. Blood urea measurement as a technique for assessing protein quality. Br J Nutr 1970;24:983-8. https://doi.org/10.1079/BJN19700101
  90. Lemon PWR, Mullin JP. Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol 1980;48:624-9. https://doi.org/10.1152/jappl.1980.48.4.624
  91. Bos C, Gaudichon C, Tome D. Isotopic studies of protein and amino acid requirements. Curr Opin Clin Nutr Metab Care 2002;5:55-61. http://doi.org/10.1097/00075197-200201000-00011
  92. Committee on Nutrient Requirements of Swine, National Research Council. Nutrient requirements of swine. 10th ed. Washington, DC, USA: National Academy Press; 1998.
  93. Moehn S, Bertolo RF, Pencharz PB, Ball RO. Indicator amino acid oxidation responds rapidly to changes in lysine or protein intake in growing and adult pigs. J Nutr 2004;134:836-41. https://doi.org/10.1093/jn/134.4.836
  94. Zhao XH, Wen ZM, Meredith CN, Matthews DE, Bier DM, Young VR. Threonine kinetics at graded threonine intakes in young men. Am J Clin Nutr 1986;43:795-802. https://doi.org/10.1093/ajcn/43.5.795
  95. Brunton JA, Shoveller AK, Pencharz PB, Ball RO. The indicator amino acid oxidation method identified limiting amino acids in two parenteral nutrition solutions in neonatal piglets. J Nutr 2007;137:1253-9. https://doi.org/10.1093/jn/137.5.1253
  96. Humayun MA, Elango R, Moehn S, Ball RO, Pencharz PB. Application of the indicator amino acid oxidation technique for the determination of metabolic availability of sulfur amino acids from casein versus soy protein isolate in adult men. J Nutr 2007;137:1874-9. https://doi.org/10.1093/jn/137.8.1874
  97. Moehn S, Bertolo RF, Pencharz PB, Ball RO. Development of the indicator amino acid oxidation technique to determine the availability of amino acids from dietary protein in pigs. J Nutr 2005;135:2866-70. https://doi.org/10.1093/jn/135.12.2866
  98. Mastellar SL, Coleman RJ, Urschel KL. Controlled trial of whole body protein synthesis and plasma amino acid concentrations in yearling horses fed graded amounts of lysine. Vet J 2016;216:93-100. https://doi.org/10.1016/j.tvjl.2016.07.007
  99. Urschel KL, Geor RJ, Hanigan MD, Harris PA. Amino acid supplementation does not alter whole-body phenylalanine kinetics in Arabian geldings. J Nutr 2012;142:461-9. https://doi.org/10.3945/jn.111.149906

Cited by

  1. Evaluation of threonine requirements in mature horses fed 1:1 ratio of forage to concentrate using the indicator amino acid oxidation technique vol.282, 2021, https://doi.org/10.1016/j.anifeedsci.2021.115133