DOI QR코드

DOI QR Code

Mitochondrial DNA variation and phylogeography of native Mongolian goats

  • Ganbold, Onolragchaa (Laboratory of Animal Molecular Genetics, Division of Animal & Dairy Science, Chungnam National University) ;
  • Lee, Seung-Hwan (Laboratory of Animal Molecular Genetics, Division of Animal & Dairy Science, Chungnam National University) ;
  • Paek, Woon Kee (Daegu National Science Museum of Korea) ;
  • Munkhbayar, Munkhbaatar (Department of Biology, Mongolian National University of Education) ;
  • Seo, Dongwon (Laboratory of Animal Molecular Genetics, Division of Animal & Dairy Science, Chungnam National University) ;
  • Manjula, Prabuddha (Laboratory of Animal Molecular Genetics, Division of Animal & Dairy Science, Chungnam National University) ;
  • Khujuu, Tamir (Department of Biology, Mongolian National University of Education) ;
  • Purevee, Erdenetushig (Department of Biology, Mongolian National University of Education) ;
  • Lee, Jun Heon (Laboratory of Animal Molecular Genetics, Division of Animal & Dairy Science, Chungnam National University)
  • Received : 2019.05.13
  • Accepted : 2019.09.15
  • Published : 2020.06.01

Abstract

Objective: Mongolia is one of a few countries that supports over 25 million goats, but genetic diversity, demographic history, and the origin of goat populations in Mongolia have not been well studied. This study was conducted to assess the genetic diversity, phylogenetic status and population structure of Mongolian native goats, as well as to discuss their origin together with other foreign breeds from different countries using hypervariable region 1 (HV1) in mtDNA. Methods: In this study, we examined the genetic diversity and phylogenetic status of Mongolian native goat populations using a 452 base-pair long fragment of HVI of mitochondrial DNA from 174 individuals representing 12 populations. In addition, 329 previously published reference sequences from different regions were included in our phylogenetic analyses. Results: Investigated native Mongolian goats displayed relatively high genetic diversities. After sequencing, we found a total of 109 polymorphic sites that defined 137 haplotypes among investigated populations. Of these, haplotype and nucleotide diversities of Mongolian goats were calculated as 0.997±0.001 and 0.0283±0.002, respectively. These haplotypes clearly clustered into four haplogroups (A, B, C, and D), with the predominance of haplogroup A (90.8%). Estimates of pairwise differences (Fst) and the analysis of molecular variance values among goat populations in Mongolia showed low genetic differentiation and weak geographical structure. In addition, Kazakh, Chinese (from Huanghuai and Leizhou), and Arabian (Turkish and Baladi breeds) goats had smaller genetic differentiation compared to Mongolian goats. Conclusion: In summary, we report novel information regarding genetic diversity, population structure, and origin of Mongolian goats. The findings obtained from this study reveal that abundant haplogroups (A to D) occur in goat populations in Mongolia, with high levels of haplotype and nucleotide diversity.

Keywords

References

  1. Porter V. Goats of the world. Ipswich, UK: Farming Press Limited; 1996.
  2. Zeder M, Hesse B. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Sciences 2000;287:2254-7. https://doi.org/10.1126/science.287.5461.2254
  3. Meadow RH. Animal domestication in the Middle East: a revised view from the eastern margin. In: Possehl G, Oxford and IBH editors. Harappar civilization. New Dehli, India: Harappar Civilization; 1993. p. 295-320.
  4. Takada T, Kikkawa Y, Yonekawa H, Kawakami S, Amano T. Bezoar (Capra aegagrus) is a matriarchal candidate for ancestor of domestic goat (Capra hircus): evidence from the mitochondrial DNA diversity. Biochem Genet 1997;35:315-26. https:// doi.org/10.1023/A:1021869704889
  5. Mannen H, Nagata Y, Tsuji S. Mitochondrial DNA reveal that domestic goat (Capra hircus) are genetically affected by two subspecies of bezoar (Capra aegagurus). Biochem Genet 2001;39:145-54. https://doi.org/10.1023/A:1010266207735
  6. Naderi S, Rezaei HR, Taberlet P, et al. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One 2007;2:p.e1012. https://doi.org/10.1371/journal.pone.0001012
  7. Colli L, Lancioni H, Cardinali I, et al. Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genomics 2015;16:1115. https://doi.org/10.1186/s12864-015-2342-2
  8. Beja-Pereira A, Caramelli D, Lalueza-Fox C, et al. The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci 2006;103:8113-8. https://doi.org/10.1073/pnas.0509210103
  9. Mwacharo JM, Bjornstad G, Mobegi V, et al. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Mol Phylogenet Evol 2011;58:374-82. https://doi.org/10.1016/j.ympev.2010.11.027
  10. Lv FH, Peng WF, Yang J, et al. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Mol Biol Evol 2015;32:2515-33. https://doi.org/10.1093/molbev/msv139
  11. Touma S, Shimabukuro H, Arakawa A, Oikawa T. Maternal lineage of Okinawa indigenous Agu pig inferred from mitochondrial DNA control region. Asian-Australas J Anim Sci 2019;32:501-7. https://doi.org/10.5713/ajas.18.0378
  12. Tarekegn GM, Ji XY, Bai X, et al. Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics. Asian-Australas J Anim Sci 2018;31:1393-400. https://doi.org/10.5713/ajas.17.0596
  13. Teinlek P, Siripattarapravat K, Tirawattanawanich C. Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australas J Anim Sci 2018;31:804-11. https://doi.org/10.5713/ajas.17.0611
  14. Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci 2001;98:5927-32. https://doi.org/10.1073/pnas.091591198
  15. Sultana S, Mannen H. Polymorphism and evolutionary profile of mitochondrial DNA control region inferred from the sequences of Pakistani goats. Anim Sci J 2004;75:303-9. https://doi.org/10.1111/j.1740-0929.2004.00190.x
  16. Sardina MT, Ballester M, Marmi J, et al. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage. Anim Genet 2006;37:376-8. https://doi.org/10.1111/j.1365-2052.2006.01451.x
  17. Al-Araimi NA, Al-Atiyat RM, Gaafar OM, et al. Maternal genetic diversity and phylogeography of native Arabian goats. Livest Sci 2017;206:88-94. https://doi.org/10.1016/j.livsci. 2017.09.017
  18. NSO (National Statistics Office of Mongolia) [Internet]. Ulaanbaatar, Mongolia: Government III building; 2017 [cited 2018 Sept 2]. Available from: http://www.1212.mn/tables.aspx?TBL_ID=DT_NSO_1001_021V1
  19. Ganbold O, Lee SH, Seo D, et al. A review of population genetics research on domestic animals in Mongolia and recommendations for the improvements. J Anim Breed Genom 2018;2: 9-20. https://doi.org/10.12972/jabng.20180016
  20. MLS (Mongolian Livestock Sector) [Internet]. Ulaanbaatar, Mongolia: 2010 [cited 2018 Sept 11]. Available at: https://mofa.gov.mn/livestock/index.php?option=com_content&view=category&layout=blog&id=48&Itemid=72&lang=en
  21. Ganbold O, Manjula P, Lee SH, et al. Sequence characterization and polymorphism of melanocortin 1 receptor gene in some goat breeds with different coat color of Mongolia. Asian-Australas J Anim Sci 2019;32:939-48. https://doi.org/10.5713/ajas.18.0819
  22. Lin BZ, Odahara S, Ishida M, et al. Molecular phylogeography and genetic diversity of East Asian goats. Anim Genet 2013; 44:79-85. https://doi.org/10.1111/j.1365-2052.2012.02358.x
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symposium Series, 41. Oxford, UK: Oxford University Press; 1999. pp. 95-8.
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673- 80. https://doi.org/10.1093/nar/22.22.4673
  25. Librado P, Rozas J. DnaSP v5: Software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25:1451-2. https://doi.org/10.1093/bioinformatics/btp187
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512-26. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  28. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999;16: 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  29. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010;10:564-7. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  30. Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992;9:552-69. https://doi.org/10.1093/oxfordjournals.molbev.a040727
  31. Harpending HC. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 1994;66:591-600.
  32. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997;147:915-25. https://doi.org/10.1093/genetics/147.2.915
  33. Hiendleder S. A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes. Anim Genet 1998; 29:116-22. https://doi.org/10.1046/j.1365-2052.1998.00295.x
  34. Giuffra EJ, Kijas JMH, Amarger V, Carlborg O, Jeon JT, Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 2000;154: 1785-91. https://doi.org/10.1093/genetics/154.4.1785
  35. Meadows JR, Li K, Kantanen J, et al. Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. J Hered 2005;96:494-501. https://doi.org/10.1093/jhered/esi100
  36. Liu J, Ding X, Zeng Y, et al. Genetic diversity and phylogenetic evolution of Tibetan sheep based on mtDNA D-Loop sequences. PloS One 2016;11:e0159308. https://doi.org/10.1002/ece3.3710
  37. Tarekegn GM, Tesfaye K, Mwai OA, et al. Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats. Ecol Evol 2018;8:1543-53. https://doi.org/10.1002/ece3.3710
  38. Akis I, Oztabak K, Mengi A, Un C. Mitochondrial DNA diversity of A natolian indigenous domestic goats. J Anim Breed Genet 2014;131:487-95. https://doi.org/10.1111/jbg.12096
  39. Zhao Y, Zhao R, Zhao Z, Xu H, Zhao E, Zhang J. Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis. Mol Biol Rep 2014;41:3695-704. https://doi.org/10.1007/s11033-014-3234-2
  40. Kibegwa FM, Githui KE, Jung'a JO, Badamana MS, Nyamu MN. Mitochondrial DNA variation of indigenous goats in Narok and Isiolo counties of Kenya. J Anim Breed Genet 2016;133:238-47. https://doi.org/10.1111/jbg.12182
  41. Ser-odjav N. The archeology of Mongolia. Studies of Archeological Institute and history of Mongolian Academy of Science. 12th ed. Ulaanbaatar, Mongolia: Munkhyn Useg Press; 1987. pp. 31-42.
  42. Chen SY, Su YH, Wu SF, Sha T, Zhang YP. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Mol Phylogenet Evol 2005;37:804-14. https://doi.org/10.1016/j.ympev.2005.06.014
  43. Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991;129:555-62. https://doi.org/10.1093/genetics/129.2.555