DOI QR코드

DOI QR Code

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha (Department of Environmental Engineering, Delhi Technological University) ;
  • Haritash, A.K. (Department of Environmental Engineering, Delhi Technological University)
  • 투고 : 2019.10.18
  • 심사 : 2020.01.12
  • 발행 : 2020.03.25

초록

Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.

키워드

과제정보

The authors sincerely acknowledge the help of Mr. Mohnish Sapra, undergraduate student, Department of Environmental Engineering, DTU in many ways.

참고문헌

  1. Almeida, L.C., Garcia-Segura, S., Bocchi, N. and Brillas, E. (2011), "Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology", Appl. Catal. B, 103(1-2), 21-30. https://doi.org/10.1016/j.apcatb.2011.01.003.
  2. Ankley, G.T., Black, M.C., Garric, J., Hutchinson, T.H. and Iguchi, T. (2005), A Framework for Assessing the Hazard of Pharmaceutical Materials to Aquatic Species, in Human Pharmaceuticals - Assessing the Impacts on Aquatic Ecosystems, SETAC Press, SETAC Brussels, Belgium.
  3. Ashton, D., Hilton, M. and Thomas, K.V. (2004), "Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom", Sci. Total Environ., 333(1-3), 167-184. https://doi.org/10.1016/j.scitotenv.2004.04.062.
  4. Badawy, M.I., Wahaab, R.A. and El-Kalliny, A.S. (2009), "Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater", J. Hazard. Mater., 167(1-3), 567-574. https://doi.org/10.1016/j.jhazmat.2009.01.023.
  5. Bagal, M.V. and Gogate, P.R. (2014), "Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review", Ultrasonics Sonochem., 21(1), 1-14. https://doi.org/10.1016/j.ultsonch.2013.07.009.
  6. Behera, S.K., Kim, H.W., Oh, J. and Park, H. (2011), "Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea", Sci. Total Environ., 409(20), 4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015.
  7. Benhebal, H., Chaib, M., Leonard, A., Lambert, S.D. and Crine, M. (2012), "Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO", Mater. Sci. Semiconduct. Process., 15(3), 264-269. https://doi.org/10.1016/j.mssp.2011.12.001.
  8. Bhatkhande, D.S., Pangarkar, V.G. and Beenackers, A.A.C.M. (2001), "Photocatalytic degradation for environmental applications-A review", J. Chem. Technol. Biotechnol., 77(1), 102-116. https://doi.org/10.1002/jctb.532.
  9. Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g.
  10. Brosus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauv, S., Barbeau, B. and Prvost, M. (2009), "Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment", Water Res., 43(18), 4707-4717. https://doi.org/10.1016/j.watres.2009.07.031.
  11. Chelliapan, S. and Sallis, P.J. (2013), "Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes", J. Sci. Industr. Res., 72, 248-254.
  12. Chelliapan, S., Wilby, T. and Sallis, P. (2006), "Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics", Water Res., 40(3), 507-516. https://doi.org/10.1016/j.watres.2005.11.020.
  13. Chen, Z., Ren, N., Wang, A., Zhang, Z. and Shi, Y. (2008), "A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater", Water Res., 42(13), 3385-3392. https://doi.org/10.1016/j.watres.2008.04.020.
  14. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. and Kroiss, H. (2005), "Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plant", Water Res. 39(19), 4797-4807. https://doi.org/10.1016/j.watres.2005.09.015.
  15. Corcoran, J., Winter, J.M. and Tyler, R.C. (2010), "Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish", Critical Rev. Toxicol., 40(4), 287-304. https://doi.org/10.3109/10408440903373590.
  16. Davis, M.L. and Cornwell, D.A. (1998), Introduction to Environmental Engineering, McGraw-Hill International Edition, New York, U.S.A.
  17. Deegan, A.M., Shaik, B., Nolan, K., Urell, K., Oelgemoller, M., Tobin, J. and Morrissey, A. (2011), "Treatment options for wastewater effluents from pharmaceutical companies", Int. J. Environ. Sci. Technol., 8(3), 649-666. https://doi.org/10.1007/BF03326250.
  18. Dehghani, S., Jafari, J.A., Farzadkia, M. and Gholami, M. (2013), "Sulphonamide antibiotic reduction in aquatic environment by application of Fenton oxidation process", J. Environ. Health Sci. Eng., 10(1), 29. https://doi.org/10.1186/1735-2746-10-29.
  19. Diaz-Cruz, M.S., Alda, L.D. and Bracelo, D. (2003), "Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge", Trends Anal. Chem., 22(6), 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4.
  20. Dominguez, J.R., Gonzalez, T., Palo, P., Sanchez-Martin, J., Rodrigo, M.A. and Saez, C. (2012), "Electrochemical degradation of a real pharmaceutical effluent", Water Air Soil Pollut., 223(5), 2685-2694. https://doi.org/10.1007/s11270-011-1059-3.
  21. Elmolla, E.S. and Chaudhuri, M. (2010), "Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution", Desalination, 256, 43-47. https://doi.org/10.1016/j.desal.2010.02.019.
  22. Enick, O. and Moore, M. (2007), "Assessing the assessments: Pharmaceuticals in the environment", Environ. Impact Assess., 27(8), 707-729. https://doi.org/10.1016/j.eiar.2007.01.001.
  23. Enright, A., McHugh, S., Collins, G. and O'Flaherty V. (2005), "Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater", Water Res. 39(19), 4587-4596. https://doi.org/10.1016/j.watres.2005.08.037.
  24. Eren, Z. (2012), "Ultrasound as a basic and auxiliary process for dye remediation: A review", J. Environ. Manage., 104, 127-141. https://doi.org/10.1016/j.jenvman.2012.03.028.
  25. Farzadkia, M., Bazrafshan, E., Yang, J. and Shirzad-Siboni, M. (2015), "Photocatalytic degradation of Metronidazole with illuminated $TiO_2$ nanoparticles", J. Environ. Health Sci. Eng., 13(1), 35. https://doi.org/10.1186/s40201-015-0194-y.
  26. Fatta-Kassinos, D., Meric, S. and Nikolaou, A. (2011), "Pharmaceutical residues in environment waters and wastewater: current state of knowledge and future research", Anal. Bioanal. Chem., 399, 251-275. https://doi.org/10.1007/s00216-010-4300-9.
  27. Feng, L., Oturan, N., van Hullebusch, E.D., Esposito, G. and Oturan, M.A. (2014), "Degradation of antiinflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes", Environ. Sci. Pollut. Res., 21, 8406-8416. https://doi.org/10.1007/s11356-014-2774-2.
  28. Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A. and Garric, J. (2003), "Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac", Ecotoxicol. Environ. Saf., 55(3), 359-370. https://doi.org/10.1016/S0147-6513(02)00082-9.
  29. Friedmann, D., Mendive, C. and Bahnemann, D. (2010), "$TiO_2$ for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis", Appl. Catal. B Environ., 99(3-4), 398-406. https://doi.org/10.1016/j.apcatb.2010.05.014.
  30. Gadipelly, C., Perez-Gonzalez, A., Yadav, G.D., Ortiz, I., Ibanez, R., Rathod, V.K. and Marathe, K.V. (2014), "Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse", Industr. Eng. Chem. Res., 53(29), 11571-1159. https://doi.org/10.1021/ie501210j.
  31. Gamal El-Din, M., Smith, D.W., Al Momani, F. and Wang, W. (2006), "Oxidation of resin and fatty acids by ozone: Kinetics and toxicity study", Water Res., 40(2), 392-400. https://doi.org/10.1016/j.watres.2005.11.003.
  32. Gangagni, A.R., Venkata Naidu, G., Krishna Prasad, K., Rao, N.C., Mohan, S.V., Jetty, A. and Sarma, M.P. (2005), "Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR)", Bioresour. Technol., 96(1), 87-93. https://doi.org/10.1016/j.biortech.2003.05.007.
  33. Garoma, T., Umamaheshwar, S.K. and Mumper, A. (2010), "Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation", Chemosphere 79, 814-820. 10.1016/j.chemosphere.2010.02.060.
  34. Gerrity, D., Gamage, S., Jones, D., Korshin, G.V., Lee, Y., Pisarenko, A., Trenholm, R.A., Gunten, U.V., Wert, E.C. and Snyder, S.A. (2012), "Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation", Water Res., 46(19), 6257-6272. http://dx.doi.org/10.1016/j.watres.2012.08.037.
  35. Gonzalez, T., Dominguez, J.R., Palo, P., Sanchez-Martin, J. and Cuerda-Correa E.M. (2011), "Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution", Desalination, 280(1-3), 197-202. https://doi.org/10.1016/j.desal.2011.07.012.
  36. He, F. and Lei, L.C. (2004), "Degradation kinectics and mechanisms of phenol on photo-Fenton process", J. Zhejiang Univ. Sci., 5, 198-205. https://doi.org/10.3969/j.issn.1673-565X.2004.02.012
  37. Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemannt, D.W. (1995), "Environmental applications of semiconductor photocatalysis", Chem. Rev., 95(1), 69-96. https://doi.org/10.1021/cr00033a004.
  38. Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C., Ort, C., Sivon Gunten, H. and Siegrist, U.H. (2009), "Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration", Environ. Sci. Technol., 43(20), 7862-7869. https://doi.org/10.1021/es9014629.
  39. Hussain, S., Shaikh, S and, Farooqui, M. (2011), "COD reduction of waste water streams of active pharmaceutical ingredient- Atenolol manufacturing unit by advanced oxidation- Fenton process", J. Saudi Chem. Soc.
  40. Ikehata, K., Naghashkar, N.J. and El-Din, M.G. (2006), "Degradation of aqueous pharmaceuticals ozonation and advanced oxidation process: A review", Ozone Sci. Eng., 28(6), 353-414. https://doi.org/10.1080/01919510600985937.
  41. Jacobsen, P. and Berglind, L. (1988), "Persistence of oxytetracycline in sediments from fish farms", Aquaculture, 70(4), 365-370. https://doi.org/10.1016/0044-8486(88)90120-2.
  42. Kamat, P.V., Huehn, R. and Nicolaescu, R. (2002), "A sense and shoot approach for photocatalytic degradation of organic contaminants in water", J. Phys. Chem. B, 106(4), 788-794. https://doi.org/10.1021/jp013602t.
  43. Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2013), Heterogeneous Photocatalysis for Pharmaceutical Wastewater Treatment, in Green Materials for Energy, Products and Depollution, Springer, 69-133.
  44. Kaur, A. and Kansal, S.K. (2016), "$Bi_2WO_6$ nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase", Chem. Eng. J., 302, 194-203. https://doi.org/10.1016/j.cej.2016.05.010.
  45. Kavitha, V. and Palanivelu, K. (2004), "The role of Ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol," Chemosphere, 55(9), 1235-1243. https://doi.org/10.1016/j.chemosphere.2003.12.022.
  46. Kim, H.K. and Ihm, K.S. (2011), "Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters", J. Hazard. Mater., 186(1), 16-34. https://doi.org/10.1016/j.jhazmat.2010.11.011.
  47. Kim, I. and Tanaka, H. (2010), "Use of ozone-based processes for the removal of pharmaceuticals detected in a wastewater treatment plant", Water Environ. Res., 82(4), 294-301. https://doi.org/10.2175/106143009x12487095236630.
  48. Kudo, A. and Miseki, Y. (2009), "Heterogeneous photocatalyst materials for water splitting", Chem. Soc. Rev., 38(1), 253-278. https://doi.org/10.1039/b800489g.
  49. Kulik, N., Trapido, M., Goi, A., Veressinina, Y. and Munter, R. (2008), "Combined chemical treatment of pharmaceutical effluents from medical ointment production", Chemosphere, 70(8), 1525-1531. https://doi.org/10.1016/j.chemosphere.2007.08.026.
  50. Lang, X.M. (2006), "Pharmaceutical wastewater treatment with hydrolysis acidifying-UNITANK-BAF process", Ph.D. Thesis. Northeast University, Shenyang, China.
  51. LaPara, T., Nakatsu, C., Pantea, L. and Alleman, J. (2002), "Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE", Water Res., 36(3), 638-646. https://doi.org/10.1016/s0043-1354(01)00277-9.
  52. Larsen, T., Lienert, J., Joss, A. and Siegrist, H. (2004), "How to avoid pharmaceuticals in the aquatic environment", J. Biotechnol., 113(1-3), 295-304. https://doi.org/10.1016/j.jbiotec.2004.03.033.
  53. Lee, K.M., Lai, C.W., Ngai, K.S. and Juan, J.C. (2016), "Recent developments of zinc oxide based photocatalyst in water treatment technology: A review", Water Res., 88, 428-448. https://doi.org/10.1016/j.watres.2015.09.045.
  54. Li, W., Zhou, Q. and Hua, T. (2010), "Removal of organic matter from landfill leachate by advanced oxidation processes: A review", Int. J. Chem. Eng. http://dx.doi.org/10.1155/2010/270532.
  55. Luna, A.J., Nascimento, C.A., Foletto, E.L., Moraes, J.E. and Chiavone-Filhoe, O. (2014), "Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor", Environ. Technol., 35(3), 364-371. https://doi.org/10.1080/09593330.2013.828762.
  56. Madukasi, E.I., Dai, X., He, C. and Zhou, J. (2010), "Potentials of phototrophic bacteria in treating pharmaceutical wastewater", Int. J. Environ. Sci. Technol., 7(1), 165-174. https://doi.org/10.1007/BF03326128.
  57. Matouq, M. and Tagawa, T. (2014), "High frequency ultrasound waves for degradation of amoxicillin in the presence of hydrogen peroxides for industrial pharmaceutical wastewater treatment", Global NEST Int. J., 16(5), 805-813. https://doi.org/10.30955/gnj.001413
  58. Mendez-Arriaga, F., Torres-Palma, R.A., Petrier, C., Esplugas, S., Gimenez, J. and Pulgarin, C. (2009), "Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes", Water Res., 43(16), 3984-3991. https://doi.org/10.1016/j.watres.2009.06.059.
  59. Mendez-Arriaga, F., Esplugas, S. and Gimenez, J. (2008), "Photocatalytic degradation of non-steroidal antiinflammatory drugs with $TiO_2$ and simulated solar irradiation", Water Res., 42(3), 585-594. https://doi.org/10.1016/j.watres.2007.08.002.
  60. Mondal, K., Kumar, J. and Sharma, A. (2013), "$TiO_2$ nanoparticles impregnated photocatalytic macroporous carbon films by spin coating", Nanomater. Energy, 2(3), 121-133. https://doi.org/10.1680/nme.12.00034.
  61. Naddeo, V., Landi, M., Belgiorno, V. and Napoli, R.M.A. (2009), "Wastewater disinfection by combination of ultrasound and ultraviolet irradiation", J. Hazard. Mater., 168(2-3), 925-929. https://doi.org/10.1016/j.jhazmat.2009.02.128.
  62. Naddeo, V., Uyguner-Demirel, C.S., Prado, M., Cesaro, A., Belgiorn, V. and Ballesteros, F. (2015), "Enhanced ozonation of selected pharmaceutical compounds by sonolysis", Environ. Technol., 36(15), 1876-83. https://doi.org/10.1080/09593330.2015.1014864.
  63. Oktem, Y., Ince, O, Sallis, P., Donnelly, T. and Ince, B. (2007), "Anaerobic treatment of a chemical synthesis-base pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor", Bioresour. Technol., 99(5), 1089-1096. https://doi.org/10.1016/j.biortech.2007.02.036.
  64. Oturan, M.A., Nidheesh, P.V. and Zhou, M. (2018), "Electrochemical advanced oxidation processes for the abatement of persistent organic pollutants", Chemosphere, 209, 17-19, https://doi.org/10.1016/j.chemosphere.2018.06.049.
  65. Panizza, M. and Cerisola, G. (2009), "Direct and mediated anodic oxidation of organic pollutants", Chem. Rev. 109(12), 6541-6569. https://doi.org/10.1021/cr9001319.
  66. Poyatos, J.M., Munio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E. and Osorio, F. (2010), "Advanced oxidation processes for wastewater treatment: state of the art", Water Air Soil Pollut., 205(1-4), 187. https://doi.org/10.1007/s11270-009-0065-1.
  67. Raj, S.S.N. and Anjaneyulu, Y. (2003), "Evaluation of biokinectic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment", Process Biochem., 40(1), 165-175. https://doi.org/10.1016/j.procbio.2003.11.056.
  68. Rana, R.S., Singh, P., Kandari, V., Singh, R., Dobhal, R. and Gupta, S. (2014), "A review on characterization and bioremediation of pharmaceutical industries' wastewater: An Indian perspective", Appl. Water Sci., 7(1), 1-12. https://doi.org/10.1007/s13201-014-0225-3.
  69. Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J. and Mahvi, A.H. (2015), "Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution", Int. J. Environ. Sci. Technol., 12(2), 603-616. https://doi.org/10.1007/s13762-014-0706-9.
  70. Saleem, M. (2007), "Pharmaceutical wastewater treatment: A physicochemical study", J. Res. Sci., 18(2), 125-134.
  71. Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064.
  72. Santos, H.M.L.M.L., Araujo, A.N., Fachini, A., Pena, A., Matos, D.C. and Montenegro, M.C.B.S.M. (2010), "Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment", J. Hazard. Mater., 175(1-3), 45-95. https://doi.org/10.1016/j.jhazmat.2009.10.100.
  73. Saravanane, R., Murthy, D.V.S. and Krishnaiah, K. (2001), "Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system", Bioresour. Technol., 76(3), 279-281. https://doi.org/10.1016/S0960-8524(00)00121-8.
  74. Sharma, A., Verma, M. and Haritash, A.K. (2015), "Phtocatalytic degradation of Acid Orange 7 (AO7) dye using $TiO_2$", Int. J. Eng. Res. Technol., 4(3), 34-36.
  75. Sharma, A., Verma, M. and Haritash, A.K. (2016), "Degradation of toxic Azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. https://doi.org/10.12989/aer.2016.5.3.189.
  76. Diaz-Cruz, M.S., de Alda, M.J.L. and Barcelo, D. (2003), "Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge", Trends Anal. Chem., 22(6), 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4.
  77. Staehelin, J. and Hoigne, J. (1985), "Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions", Environ. Sci. Technol., 19(12), 1206-1213. https://doi.org/10.1021/es00142a012.
  78. Sunil Paul, M.M., Aravind, U.K., Pramod, G. and Aravinda Kumar, C.T. (2013), "Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium", Chemosphere, 91(3), 295-301. https://doi.org/10.1016/j.chemosphere.2012.11.033.
  79. Trovo, A.G., Melo, S.A.S. and Nogueira, R.F.P. (2008), "Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process- Application to sewage treatment plant effluent", J. Photochem. Photobiol. A Chem., 198, 215-220. https://doi.org/10.1016/j.jphotochem.2008.03.011.
  80. Verma, M. and Haritash, A.K. (2019), "Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes", J. Environ. Chem. Eng., 7(1), 102886. https://doi.org/10.1016/j.jece.2019.102886.
  81. Vilar, V.J., Moreira, F.C., Ferreira, A.C., Sousa, M.A., Goncalves, C., Alpendurada, M.F. and Boaventura, R.A. (2012), "Biodegradability enhancement of a pesticides-containing bio-treated wastewater using a solar photo-Fenton treatment step followed by a biological oxidation process", Water Resour., 46(15), 4599-4613. https://doi.org/10.1016/j.watres.2012.06.038.
  82. Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R. and d'Ischia, M. (2004), "Advanced oxidation of the pharmaceutical drug diclofenac with UV/$H_2O_2$ and ozone", Water Res., 38(2), 414-422. https://doi.org/10.1016/j.watres.2003.09.028.
  83. Yahya, M.S., Karbane, M.E., Oturan, N., Kacemi, K.E. and Oturan, M.A. (2015), "Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: Kinetics and intermediates products analysis", Environ. Technol., 37(10), 1276-1287. https://doi.org/10.1080/09593330.2015.
  84. Zha, S., Cheng, Y., Gao, Y., Chen, Z., Megharaj, M. and Naidu, R. (2014), "Nanoscale zero-valent iron as a catalyst for heterogenous Fenton oxidation of amoxicillin", Chem. Eng. J., 255, 141-148. https://doi.org/10.1016/j.cej.2014.06.057.
  85. Zhou, H. and Smith, D.W. (2002), "Advanced technologies in water and wastewater treatment", Can. J. Civ. Eng., 1(4), 49-66. https://doi.org/10.1139/s02-020.

피인용 문헌

  1. A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2020, https://doi.org/10.12989/aer.2021.10.1.059