Acknowledgement
The authors sincerely acknowledge the help of Mr. Mohnish Sapra, undergraduate student, Department of Environmental Engineering, DTU in many ways.
References
- Almeida, L.C., Garcia-Segura, S., Bocchi, N. and Brillas, E. (2011), "Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology", Appl. Catal. B, 103(1-2), 21-30. https://doi.org/10.1016/j.apcatb.2011.01.003.
- Ankley, G.T., Black, M.C., Garric, J., Hutchinson, T.H. and Iguchi, T. (2005), A Framework for Assessing the Hazard of Pharmaceutical Materials to Aquatic Species, in Human Pharmaceuticals - Assessing the Impacts on Aquatic Ecosystems, SETAC Press, SETAC Brussels, Belgium.
- Ashton, D., Hilton, M. and Thomas, K.V. (2004), "Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom", Sci. Total Environ., 333(1-3), 167-184. https://doi.org/10.1016/j.scitotenv.2004.04.062.
- Badawy, M.I., Wahaab, R.A. and El-Kalliny, A.S. (2009), "Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater", J. Hazard. Mater., 167(1-3), 567-574. https://doi.org/10.1016/j.jhazmat.2009.01.023.
- Bagal, M.V. and Gogate, P.R. (2014), "Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review", Ultrasonics Sonochem., 21(1), 1-14. https://doi.org/10.1016/j.ultsonch.2013.07.009.
- Behera, S.K., Kim, H.W., Oh, J. and Park, H. (2011), "Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea", Sci. Total Environ., 409(20), 4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015.
- Benhebal, H., Chaib, M., Leonard, A., Lambert, S.D. and Crine, M. (2012), "Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO", Mater. Sci. Semiconduct. Process., 15(3), 264-269. https://doi.org/10.1016/j.mssp.2011.12.001.
- Bhatkhande, D.S., Pangarkar, V.G. and Beenackers, A.A.C.M. (2001), "Photocatalytic degradation for environmental applications-A review", J. Chem. Technol. Biotechnol., 77(1), 102-116. https://doi.org/10.1002/jctb.532.
- Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g.
- Brosus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauv, S., Barbeau, B. and Prvost, M. (2009), "Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment", Water Res., 43(18), 4707-4717. https://doi.org/10.1016/j.watres.2009.07.031.
- Chelliapan, S. and Sallis, P.J. (2013), "Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes", J. Sci. Industr. Res., 72, 248-254.
- Chelliapan, S., Wilby, T. and Sallis, P. (2006), "Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics", Water Res., 40(3), 507-516. https://doi.org/10.1016/j.watres.2005.11.020.
- Chen, Z., Ren, N., Wang, A., Zhang, Z. and Shi, Y. (2008), "A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater", Water Res., 42(13), 3385-3392. https://doi.org/10.1016/j.watres.2008.04.020.
- Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. and Kroiss, H. (2005), "Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plant", Water Res. 39(19), 4797-4807. https://doi.org/10.1016/j.watres.2005.09.015.
- Corcoran, J., Winter, J.M. and Tyler, R.C. (2010), "Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish", Critical Rev. Toxicol., 40(4), 287-304. https://doi.org/10.3109/10408440903373590.
- Davis, M.L. and Cornwell, D.A. (1998), Introduction to Environmental Engineering, McGraw-Hill International Edition, New York, U.S.A.
- Deegan, A.M., Shaik, B., Nolan, K., Urell, K., Oelgemoller, M., Tobin, J. and Morrissey, A. (2011), "Treatment options for wastewater effluents from pharmaceutical companies", Int. J. Environ. Sci. Technol., 8(3), 649-666. https://doi.org/10.1007/BF03326250.
- Dehghani, S., Jafari, J.A., Farzadkia, M. and Gholami, M. (2013), "Sulphonamide antibiotic reduction in aquatic environment by application of Fenton oxidation process", J. Environ. Health Sci. Eng., 10(1), 29. https://doi.org/10.1186/1735-2746-10-29.
- Diaz-Cruz, M.S., Alda, L.D. and Bracelo, D. (2003), "Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge", Trends Anal. Chem., 22(6), 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4.
- Dominguez, J.R., Gonzalez, T., Palo, P., Sanchez-Martin, J., Rodrigo, M.A. and Saez, C. (2012), "Electrochemical degradation of a real pharmaceutical effluent", Water Air Soil Pollut., 223(5), 2685-2694. https://doi.org/10.1007/s11270-011-1059-3.
- Elmolla, E.S. and Chaudhuri, M. (2010), "Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution", Desalination, 256, 43-47. https://doi.org/10.1016/j.desal.2010.02.019.
- Enick, O. and Moore, M. (2007), "Assessing the assessments: Pharmaceuticals in the environment", Environ. Impact Assess., 27(8), 707-729. https://doi.org/10.1016/j.eiar.2007.01.001.
- Enright, A., McHugh, S., Collins, G. and O'Flaherty V. (2005), "Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater", Water Res. 39(19), 4587-4596. https://doi.org/10.1016/j.watres.2005.08.037.
- Eren, Z. (2012), "Ultrasound as a basic and auxiliary process for dye remediation: A review", J. Environ. Manage., 104, 127-141. https://doi.org/10.1016/j.jenvman.2012.03.028.
-
Farzadkia, M., Bazrafshan, E., Yang, J. and Shirzad-Siboni, M. (2015), "Photocatalytic degradation of Metronidazole with illuminated
$TiO_2$ nanoparticles", J. Environ. Health Sci. Eng., 13(1), 35. https://doi.org/10.1186/s40201-015-0194-y. - Fatta-Kassinos, D., Meric, S. and Nikolaou, A. (2011), "Pharmaceutical residues in environment waters and wastewater: current state of knowledge and future research", Anal. Bioanal. Chem., 399, 251-275. https://doi.org/10.1007/s00216-010-4300-9.
- Feng, L., Oturan, N., van Hullebusch, E.D., Esposito, G. and Oturan, M.A. (2014), "Degradation of antiinflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes", Environ. Sci. Pollut. Res., 21, 8406-8416. https://doi.org/10.1007/s11356-014-2774-2.
- Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A. and Garric, J. (2003), "Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac", Ecotoxicol. Environ. Saf., 55(3), 359-370. https://doi.org/10.1016/S0147-6513(02)00082-9.
-
Friedmann, D., Mendive, C. and Bahnemann, D. (2010), "
$TiO_2$ for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis", Appl. Catal. B Environ., 99(3-4), 398-406. https://doi.org/10.1016/j.apcatb.2010.05.014. - Gadipelly, C., Perez-Gonzalez, A., Yadav, G.D., Ortiz, I., Ibanez, R., Rathod, V.K. and Marathe, K.V. (2014), "Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse", Industr. Eng. Chem. Res., 53(29), 11571-1159. https://doi.org/10.1021/ie501210j.
- Gamal El-Din, M., Smith, D.W., Al Momani, F. and Wang, W. (2006), "Oxidation of resin and fatty acids by ozone: Kinetics and toxicity study", Water Res., 40(2), 392-400. https://doi.org/10.1016/j.watres.2005.11.003.
- Gangagni, A.R., Venkata Naidu, G., Krishna Prasad, K., Rao, N.C., Mohan, S.V., Jetty, A. and Sarma, M.P. (2005), "Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR)", Bioresour. Technol., 96(1), 87-93. https://doi.org/10.1016/j.biortech.2003.05.007.
- Garoma, T., Umamaheshwar, S.K. and Mumper, A. (2010), "Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation", Chemosphere 79, 814-820. 10.1016/j.chemosphere.2010.02.060.
- Gerrity, D., Gamage, S., Jones, D., Korshin, G.V., Lee, Y., Pisarenko, A., Trenholm, R.A., Gunten, U.V., Wert, E.C. and Snyder, S.A. (2012), "Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation", Water Res., 46(19), 6257-6272. http://dx.doi.org/10.1016/j.watres.2012.08.037.
- Gonzalez, T., Dominguez, J.R., Palo, P., Sanchez-Martin, J. and Cuerda-Correa E.M. (2011), "Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution", Desalination, 280(1-3), 197-202. https://doi.org/10.1016/j.desal.2011.07.012.
- He, F. and Lei, L.C. (2004), "Degradation kinectics and mechanisms of phenol on photo-Fenton process", J. Zhejiang Univ. Sci., 5, 198-205. https://doi.org/10.3969/j.issn.1673-565X.2004.02.012
- Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemannt, D.W. (1995), "Environmental applications of semiconductor photocatalysis", Chem. Rev., 95(1), 69-96. https://doi.org/10.1021/cr00033a004.
- Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C., Ort, C., Sivon Gunten, H. and Siegrist, U.H. (2009), "Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration", Environ. Sci. Technol., 43(20), 7862-7869. https://doi.org/10.1021/es9014629.
- Hussain, S., Shaikh, S and, Farooqui, M. (2011), "COD reduction of waste water streams of active pharmaceutical ingredient- Atenolol manufacturing unit by advanced oxidation- Fenton process", J. Saudi Chem. Soc.
- Ikehata, K., Naghashkar, N.J. and El-Din, M.G. (2006), "Degradation of aqueous pharmaceuticals ozonation and advanced oxidation process: A review", Ozone Sci. Eng., 28(6), 353-414. https://doi.org/10.1080/01919510600985937.
- Jacobsen, P. and Berglind, L. (1988), "Persistence of oxytetracycline in sediments from fish farms", Aquaculture, 70(4), 365-370. https://doi.org/10.1016/0044-8486(88)90120-2.
- Kamat, P.V., Huehn, R. and Nicolaescu, R. (2002), "A sense and shoot approach for photocatalytic degradation of organic contaminants in water", J. Phys. Chem. B, 106(4), 788-794. https://doi.org/10.1021/jp013602t.
- Kanakaraju, D., Glass, B.D. and Oelgemoller, M. (2013), Heterogeneous Photocatalysis for Pharmaceutical Wastewater Treatment, in Green Materials for Energy, Products and Depollution, Springer, 69-133.
-
Kaur, A. and Kansal, S.K. (2016), "
$Bi_2WO_6$ nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase", Chem. Eng. J., 302, 194-203. https://doi.org/10.1016/j.cej.2016.05.010. - Kavitha, V. and Palanivelu, K. (2004), "The role of Ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol," Chemosphere, 55(9), 1235-1243. https://doi.org/10.1016/j.chemosphere.2003.12.022.
- Kim, H.K. and Ihm, K.S. (2011), "Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters", J. Hazard. Mater., 186(1), 16-34. https://doi.org/10.1016/j.jhazmat.2010.11.011.
- Kim, I. and Tanaka, H. (2010), "Use of ozone-based processes for the removal of pharmaceuticals detected in a wastewater treatment plant", Water Environ. Res., 82(4), 294-301. https://doi.org/10.2175/106143009x12487095236630.
- Kudo, A. and Miseki, Y. (2009), "Heterogeneous photocatalyst materials for water splitting", Chem. Soc. Rev., 38(1), 253-278. https://doi.org/10.1039/b800489g.
- Kulik, N., Trapido, M., Goi, A., Veressinina, Y. and Munter, R. (2008), "Combined chemical treatment of pharmaceutical effluents from medical ointment production", Chemosphere, 70(8), 1525-1531. https://doi.org/10.1016/j.chemosphere.2007.08.026.
- Lang, X.M. (2006), "Pharmaceutical wastewater treatment with hydrolysis acidifying-UNITANK-BAF process", Ph.D. Thesis. Northeast University, Shenyang, China.
- LaPara, T., Nakatsu, C., Pantea, L. and Alleman, J. (2002), "Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE", Water Res., 36(3), 638-646. https://doi.org/10.1016/s0043-1354(01)00277-9.
- Larsen, T., Lienert, J., Joss, A. and Siegrist, H. (2004), "How to avoid pharmaceuticals in the aquatic environment", J. Biotechnol., 113(1-3), 295-304. https://doi.org/10.1016/j.jbiotec.2004.03.033.
- Lee, K.M., Lai, C.W., Ngai, K.S. and Juan, J.C. (2016), "Recent developments of zinc oxide based photocatalyst in water treatment technology: A review", Water Res., 88, 428-448. https://doi.org/10.1016/j.watres.2015.09.045.
- Li, W., Zhou, Q. and Hua, T. (2010), "Removal of organic matter from landfill leachate by advanced oxidation processes: A review", Int. J. Chem. Eng. http://dx.doi.org/10.1155/2010/270532.
- Luna, A.J., Nascimento, C.A., Foletto, E.L., Moraes, J.E. and Chiavone-Filhoe, O. (2014), "Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor", Environ. Technol., 35(3), 364-371. https://doi.org/10.1080/09593330.2013.828762.
- Madukasi, E.I., Dai, X., He, C. and Zhou, J. (2010), "Potentials of phototrophic bacteria in treating pharmaceutical wastewater", Int. J. Environ. Sci. Technol., 7(1), 165-174. https://doi.org/10.1007/BF03326128.
- Matouq, M. and Tagawa, T. (2014), "High frequency ultrasound waves for degradation of amoxicillin in the presence of hydrogen peroxides for industrial pharmaceutical wastewater treatment", Global NEST Int. J., 16(5), 805-813. https://doi.org/10.30955/gnj.001413
- Mendez-Arriaga, F., Torres-Palma, R.A., Petrier, C., Esplugas, S., Gimenez, J. and Pulgarin, C. (2009), "Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes", Water Res., 43(16), 3984-3991. https://doi.org/10.1016/j.watres.2009.06.059.
-
Mendez-Arriaga, F., Esplugas, S. and Gimenez, J. (2008), "Photocatalytic degradation of non-steroidal antiinflammatory drugs with
$TiO_2$ and simulated solar irradiation", Water Res., 42(3), 585-594. https://doi.org/10.1016/j.watres.2007.08.002. -
Mondal, K., Kumar, J. and Sharma, A. (2013), "
$TiO_2$ nanoparticles impregnated photocatalytic macroporous carbon films by spin coating", Nanomater. Energy, 2(3), 121-133. https://doi.org/10.1680/nme.12.00034. - Naddeo, V., Landi, M., Belgiorno, V. and Napoli, R.M.A. (2009), "Wastewater disinfection by combination of ultrasound and ultraviolet irradiation", J. Hazard. Mater., 168(2-3), 925-929. https://doi.org/10.1016/j.jhazmat.2009.02.128.
- Naddeo, V., Uyguner-Demirel, C.S., Prado, M., Cesaro, A., Belgiorn, V. and Ballesteros, F. (2015), "Enhanced ozonation of selected pharmaceutical compounds by sonolysis", Environ. Technol., 36(15), 1876-83. https://doi.org/10.1080/09593330.2015.1014864.
- Oktem, Y., Ince, O, Sallis, P., Donnelly, T. and Ince, B. (2007), "Anaerobic treatment of a chemical synthesis-base pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor", Bioresour. Technol., 99(5), 1089-1096. https://doi.org/10.1016/j.biortech.2007.02.036.
- Oturan, M.A., Nidheesh, P.V. and Zhou, M. (2018), "Electrochemical advanced oxidation processes for the abatement of persistent organic pollutants", Chemosphere, 209, 17-19, https://doi.org/10.1016/j.chemosphere.2018.06.049.
- Panizza, M. and Cerisola, G. (2009), "Direct and mediated anodic oxidation of organic pollutants", Chem. Rev. 109(12), 6541-6569. https://doi.org/10.1021/cr9001319.
- Poyatos, J.M., Munio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E. and Osorio, F. (2010), "Advanced oxidation processes for wastewater treatment: state of the art", Water Air Soil Pollut., 205(1-4), 187. https://doi.org/10.1007/s11270-009-0065-1.
- Raj, S.S.N. and Anjaneyulu, Y. (2003), "Evaluation of biokinectic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment", Process Biochem., 40(1), 165-175. https://doi.org/10.1016/j.procbio.2003.11.056.
- Rana, R.S., Singh, P., Kandari, V., Singh, R., Dobhal, R. and Gupta, S. (2014), "A review on characterization and bioremediation of pharmaceutical industries' wastewater: An Indian perspective", Appl. Water Sci., 7(1), 1-12. https://doi.org/10.1007/s13201-014-0225-3.
- Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J. and Mahvi, A.H. (2015), "Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution", Int. J. Environ. Sci. Technol., 12(2), 603-616. https://doi.org/10.1007/s13762-014-0706-9.
- Saleem, M. (2007), "Pharmaceutical wastewater treatment: A physicochemical study", J. Res. Sci., 18(2), 125-134.
- Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064.
- Santos, H.M.L.M.L., Araujo, A.N., Fachini, A., Pena, A., Matos, D.C. and Montenegro, M.C.B.S.M. (2010), "Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment", J. Hazard. Mater., 175(1-3), 45-95. https://doi.org/10.1016/j.jhazmat.2009.10.100.
- Saravanane, R., Murthy, D.V.S. and Krishnaiah, K. (2001), "Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system", Bioresour. Technol., 76(3), 279-281. https://doi.org/10.1016/S0960-8524(00)00121-8.
-
Sharma, A., Verma, M. and Haritash, A.K. (2015), "Phtocatalytic degradation of Acid Orange 7 (AO7) dye using
$TiO_2$ ", Int. J. Eng. Res. Technol., 4(3), 34-36. - Sharma, A., Verma, M. and Haritash, A.K. (2016), "Degradation of toxic Azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. https://doi.org/10.12989/aer.2016.5.3.189.
- Diaz-Cruz, M.S., de Alda, M.J.L. and Barcelo, D. (2003), "Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge", Trends Anal. Chem., 22(6), 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4.
- Staehelin, J. and Hoigne, J. (1985), "Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions", Environ. Sci. Technol., 19(12), 1206-1213. https://doi.org/10.1021/es00142a012.
- Sunil Paul, M.M., Aravind, U.K., Pramod, G. and Aravinda Kumar, C.T. (2013), "Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium", Chemosphere, 91(3), 295-301. https://doi.org/10.1016/j.chemosphere.2012.11.033.
- Trovo, A.G., Melo, S.A.S. and Nogueira, R.F.P. (2008), "Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process- Application to sewage treatment plant effluent", J. Photochem. Photobiol. A Chem., 198, 215-220. https://doi.org/10.1016/j.jphotochem.2008.03.011.
- Verma, M. and Haritash, A.K. (2019), "Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes", J. Environ. Chem. Eng., 7(1), 102886. https://doi.org/10.1016/j.jece.2019.102886.
- Vilar, V.J., Moreira, F.C., Ferreira, A.C., Sousa, M.A., Goncalves, C., Alpendurada, M.F. and Boaventura, R.A. (2012), "Biodegradability enhancement of a pesticides-containing bio-treated wastewater using a solar photo-Fenton treatment step followed by a biological oxidation process", Water Resour., 46(15), 4599-4613. https://doi.org/10.1016/j.watres.2012.06.038.
-
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R. and d'Ischia, M. (2004), "Advanced oxidation of the pharmaceutical drug diclofenac with UV/
$H_2O_2$ and ozone", Water Res., 38(2), 414-422. https://doi.org/10.1016/j.watres.2003.09.028. - Yahya, M.S., Karbane, M.E., Oturan, N., Kacemi, K.E. and Oturan, M.A. (2015), "Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: Kinetics and intermediates products analysis", Environ. Technol., 37(10), 1276-1287. https://doi.org/10.1080/09593330.2015.
- Zha, S., Cheng, Y., Gao, Y., Chen, Z., Megharaj, M. and Naidu, R. (2014), "Nanoscale zero-valent iron as a catalyst for heterogenous Fenton oxidation of amoxicillin", Chem. Eng. J., 255, 141-148. https://doi.org/10.1016/j.cej.2014.06.057.
- Zhou, H. and Smith, D.W. (2002), "Advanced technologies in water and wastewater treatment", Can. J. Civ. Eng., 1(4), 49-66. https://doi.org/10.1139/s02-020.
Cited by
- A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2020, https://doi.org/10.12989/aer.2021.10.1.059