DOI QR코드

DOI QR Code

Aging of Solid Fuels Composed of Zr and ZrNi Part 1: Thermal/Chemical/Spectroscopic Analysis

Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 1: 열/화학/분광학적 분석

  • Han, Byungheon (Mechanical and Aerospace Engineering, Seoul National University) ;
  • Ryu, Jihoon (Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yang, Junho (Mechanical and Aerospace Engineering, Seoul National University) ;
  • Oh, Juyoung (Mechanical and Aerospace Engineering, Seoul National University) ;
  • Gnanaprakash, K. (Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.02.10
  • Accepted : 2020.03.15
  • Published : 2020.04.01

Abstract

The characterization of aging of the pyrotechnic device is conducted thermally, chemically, and spectroscopically. The device is comprised of two parts: (i) igniter composed of Zr and (ii) pyrotechnic delay composed of ZrNi alloy. The thermally induced chemical reaction is identified through Differential Scanning Calorimetry (DSC) and Thermogravimetry Analysis (TGA). The peak deconvolution of the themo-chemical data is used to estimate the enthalpy change of each metallic fuel component. Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Photoelectron Spectroscopy (XPS) are used for chemical species analysis. The decomposition of oxidants by moisture significantly affected the fuel aging, and the formation of oxide film and metal oxide on the fuel surface gave rise to the thermal energy decrease.

Zr을 원료로하는 점화제와 ZrNi를 원료로 하는 지연제로 구성된 파이로테크닉스의 노화현상을 열적/화학적/광학적으로 분석하였다. 열적 분석에는 Differential Scanning Calorimetry (DSC) 와 Thermogravimetry Analysis(TGA)를 통해 열 기반의 반응식을 규명했다. DSC의 결과로 수행한 픽 분석기법 (peak deconvolution)을 통해 각 연료의 노화에 따른 열적 변화를 분석하였다. 화학종 변화 분석에는 Laser Induced Breakdown Spectroscopy (LIBS)와 X-ray Photoelectron Spectroscopy (XPS)를 사용하였다. 수분에 의한 산화제의 분해가 연료의 노화에 크게 영향을 미쳤으며, 열에너지 감소의 원인은 연료 표면의 산화막 형성과 산화금속의 형성으로 나타났다.

Keywords

References

  1. Stein, J.D., Jeager, E.A., and Jeffer J.B., "Air Bags and Ocular Injuries," Transactions of the American Mathematical Society, 97, pp. 59-86, 1999.
  2. Klapotke, T.M., Chemistry of High Energy Materials, 4th ed., Walter de Gruyter., Berlin., Germany, 2009.
  3. Brian, A.M., Jeremy, R.R., and Mark, W.K., "Humidity Induced Burning Rate Degradation of an Iron Oxide Catalyzed Ammonium Perchlorate/HTPB Composite Propellant, Combustion and Flame, 161, pp. 363-369, 2014. https://doi.org/10.1016/j.combustflame.2013.08.014
  4. Brown, S.D., Charsley, E.L., Goodall, S.J., Raye, P.G., Rooney, J.J., and Griffiths, T.T., "Studies on the Ageing of a Magnesium-potassium Nitrate Pyrotechnic Composition Using Isothermal Heat Flow Calorimetry and Thermal Analysis Techniques," Thermochimica Acta, Vol. 401, No. 1, pp. 53-61, 2003. https://doi.org/10.1016/S0040-6031(03)00055-8
  5. Mei, J., Halldearn, R.D., and Xiao, P., "Mechanisms of the Aluminum-Iron Oxide Thermite Reaction," Scripta Materialia, 41, 541, 1999. https://doi.org/10.1016/S1359-6462(99)00148-7
  6. Wang, Q., Sun, J., Deng, J., Wen, H., and Xu, Y., "Combustion Behavior of $Fe_2O_3$-coated Zirconium Particles in Air," Energy Procedia, 66, pp. 269-272, 2015. https://doi.org/10.1016/j.egypro.2015.02.053
  7. ASTM, Standard ASTM, Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, American Society for Testing and Materials, Philadelphia., U.S.A., 1979.
  8. Furuichi, R., Ishii, T., Yamanaka, Z., and Shimokawabe, M., "SEM Observation of the Thermal Decomposition Processes of $KClO_4$, $KClO_3$, $KBrO_3$, $KlO_4$ and $KIO_3$ in the Presence of $a-Fe_2O_3$ and $Al_2O_3$," Thermochimica Acta, 51, pp. 199-224, 1981. https://doi.org/10.1016/0040-6031(81)85159-3
  9. Song, Z., Bao, X., Wild, U., Muhler, M., and Ertl G., "Oxidation of Amorphous Ni-Zr Alloys Studied by XPS, UPS, ISS and XRD", Applied Surface Science, 134, pp. 31-38, 1998. https://doi.org/10.1016/S0169-4332(98)00249-9
  10. Nakamura, H., Akiyoshi, M., and Hara, Y., ''The Combustion Mechanism of Tungsten-Potassium Perchlorate-Barium Chromate Delay Powder'', Journal of the Industrial Explosives Society Japan, Vol. 61, No. 1, pp. 7-12, 2000.
  11. Nguyen, M.T., Seriani, N., and Gebauer, R., "Water Adsorption and Dissociation on ${\alpha}-Fe_2O_3$ (0001): PBE+ U Calculations," The Journal of Chemical Physics, Vol. 138, No. 19, 194709, 2013. https://doi.org/10.1063/1.4804999
  12. Parkinson, G.S., "Iron Oxide Surfaces," Surface Science Reports, Vol. 71, No. 1, pp. 272-365, 2016. https://doi.org/10.1016/j.surfrep.2016.02.001
  13. Chuprina, V.G., "Oxidation Processes for Alloys in the Ni?Zr System. I. Structure of Ni?Zr Alloys. Oxidation Kinetics for Ni7Zr2," Powder Metallurgy and Metal Ceramics, Vol. 43, pp. 187-194, 2004. https://doi.org/10.1023/B:PMMC.0000035708.23817.1f
  14. Aoki, K., Masumoto, T., and Suryanarayana, C., "Crystallization of Amorphous Zr-Ni Alloys in the Presence of H2, CO, O2, N2 and Argon Gases," Journal of Materials Science, Vol. 21, pp. 793-798, 1986. https://doi.org/10.1007/BF01117356
  15. Massis, T.M., Healey, J.T., Huskisson, D.H., and Perkins, W.G., "Corrosion Problems in $Ti/KClO_4$ Loaded Devices When Subjected to Humidity Environments," Journal of Hazardous Materials, Vol. 5, No. 4, pp. 335-351, 1982. https://doi.org/10.1016/0304-3894(82)85022-X
  16. Han. B.H., Kim, Y., Jang, S., and Yoh, J.J., "Thermochemical Characterization of $Fe_2O_3$-Coated Zirconium Particles Under Natural Aging Conditions," Journal of Applied Physics, Vol. 126, 105113, 2019. https://doi.org/10.1063/1.5096803
  17. Lyapin, A., Jeurgens, L.P.H., Graat, P.C.J., and Mittemeijer, E.J., "The Initial, Thermal Oxidation of Zirconium at Room Temperature," Journal of Applied Physics Vol. 96, No. 12, 7126-7135, 2004. https://doi.org/10.1063/1.1809773
  18. Ma, W., Initial Oxidation of Zirconium: Chemistry, Atomic Structure, Transport and Growth Kinetics, Ph.D. Thesis, Massachusetts Institute of Technology, 2016.
  19. Murase, Y., and Kato, E., "Role of Water Vapor in Crystallite Growth and Tetragonal? Monoclinic Phase Transformation of $ZrO_2$," Journal of the American Ceramic Society Vol. 66, No. 3, pp. 196-200, 1983. https://doi.org/10.1111/j.1151-2916.1983.tb10016.x
  20. Lughi, V., and Sergo, V., "Low Temperature Degradation-Aging-of Zirconia: A Critical Review of the Relevant Aspects in Dentistry," Dental materials, Vol. 26, No. 8, pp. 807-820, 2010. https://doi.org/10.1016/j.dental.2010.04.006
  21. Ryu. J.H., Yang, J.H., and Yoh, J.J., "A non-calorimetric approach for investigating the moisture-induced ageing of a pyrotechnic delay material using spectroscopies," Nature Scientific Reports, Vol. 9, 15228, 2019. https://doi.org/10.1038/s41598-019-51667-y