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ON THE BOUNDS FOR THE SPECTRAL NORMS OF

GEOMETRIC AND R-CIRCULANT MATRICES WITH

BI-PERIODIC JACOBSTHAL NUMBERS
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Abstract. The study is about the bounds of the spectral norms of r-
circulant and geometric circulant matrices with the sequences called biperi-

odic Jacobsthal numbers. Then we give bounds for the spectral norms of
Kronecker and Hadamard products of these r-circulant matrices and geo-

metric circulant matrices. The eigenvalues and determinant of r-circulant

matrices with the bi-periodic Jacobsthal numbers are obtained.
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1. Introduction

Special integer sequences are encountered in many areas such as architucture,
nature, in human body, computer programmming. The sequences have many
interpretations, representations and applications in distinct areas of mathemat-
ics. One of them, Jacobsthal numbers are defined recursively by the second
order linear relation such as Fibonacci numbers. In this paper we introduce
the Jacobsthal representation by using two different variables a,b, construct a
generalization of Jacobsthal numbers.

The circulant and r-circulant matrices were first proposed by Davis in [14].
The researchers found different properties of these matrices. It is one of the most
important research subject in the field of the computation and pure mathematics.
In particular, they have important position and appliation in solving coding
theory, different types of partial and ordinary differential equations, numerical
analysis and so on. Obviously, the matrices are determined by the parameter r
and the first row elements of the matrix. When the parameter satisfies r=1, the
matrix turns into the classical circulant matrix. Many scholars have studied the
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spectral norms of these matrices with famous sequences in last decade. Some
great contributions for the spectral norms of r-circulant matrix and geometric
circulant matrix can be found in references [1–13]. In [1], Solak has studied the
spectral norms of circulant matrices with the Fibonacci and Lucas numbers. In
[2], Kocer et al. obtained norms of circulant and semicirculant matrices with
Horadam numbers. In [3], Shen and Cen have given upper and lower bounds for
the spectral norms of r-circulant matrices with the Fibonacci and Lucas numbers.
In [4], Bahsi computed the spectral norms of circulant and r-circulant matrices
with the hyperharmonic numbers. Moreover, in [5], Bahsi and Solak studied
norms of circulant and r-circulant matrices with the hyper-Fibonacci and hyper-
Lucas numbers. In [6], Shen et al. computed the determinants and inverses of
circulant matrices with Fibonacci and Lucas numbers. In [7], Yazlık and Taskara
have studied eigenvalues, determinant and the spectral norms of circulant matrix
involving of r-circulant matrix with the generalized k-Horadam numbers. In
[8], He et al. gave the upper bound estimation of the spectral norm for r-
circulant matrices with Fibonacci and Lucas numbers. In [9], Uygun computed
some bounds for the norms of circulant matrices with the k-Jacobsthal and k-
Jacobsthal Lucas numbers. Kızılateş and Tuglu [10] found the bounds for the
spectral norms of geometric circulant matrices with the generalized Fibonacci,
Lucas numbers, and hyperharmonic Fibonacci numbers. In [11], Raza et al.
have also studied the norms of many special matrices with generalized Fibonacci
sequences. In [12], Shi studied the spectral norms of geometric circulant matrices
with the generalized k-Horadam numbers. Köme and Yazlik [13] have presented
new upper and lower bounds for the spectral norms of the r-circulant matrices
with biperiodic Fibonacci and biperiodic Lucas numbers.

Jacobsthal and Jacobsthal Lucas numbers are given by the recurrence re-
lations jn = jn−1 + 2jn−2, with the initial values of j0 = 0, j1 = 1 and
cn = cn−1 + 2cn−2, with the initial values of c0 = 2, c1 = 1 for n ≥ 2, re-
spectively in [15]. Edson, Yayenie defined a new generalization of Fibonacci
sequences called bi-periodic Fibonacci sequences in [16]. The sequence arises
in a natural way in the study of continued fractions of quadratic irrationals
and combinatorics on words or dynamical system theory. Then Bilgici gave the
properties of bi-periodic Lucas sequence in [17]. The authors studied bi-periodic
Jacobsthal sequences in [18]. For any two non-zero real numbers a and b, the
bi-periodic Jacobsthal sequence is defined as [18]

ĵ0 = 0, ĵ1 = 1, ĵn =

{
aĵn−1 + 2ĵn−2 if n is even

bĵn−1 + 2ĵn−2 if n is odd
n ≥ 2.

The Binet formula is

ĵm =

(
a1−ε(m)

(ab)b
m
2 c

)
αm − βm

α− β
(1)

where α and β are the roots of the nonlinear quadratic equation for the bi-
periodic Jacobsthal sequence, which is given as x2 − abx − 2ab = 0, and bac is
the floor function of a and ζ(n) = n− 2bn2 c is the parity function.
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For any two non-zero real numbers a and b, the bi-periodic Jacobsthal Lucas
sequence is defined as [19]

ĉ0 = 2, ĉ1 = a, ĉn =

{
bĉn−1 + 2ĉn−2 if n is even
aĉn−1 + 2ĉn−2 if n is odd

n ≥ 2.

The Binet formula for the bi-periodic Jacobsthal Lucas sequence is

ĉm =

(
aε(m)

(ab)b
m+1

2 c

)
(αm + βm). (2)

Definition 1.1. Let n ≥ 2 be an integer, r be any real or complex number.
Then an r-circulant matrix Cr with order n is defined as follows:

Cr =


c0 c1 c2 . . . cn−1

rcn−1 c0 c1 . . . cn−2
rcn−2 cn−1 c0 . . . cn−3

...
...

...
. . .

...
rc1 rc2 rc3 . . . c0

 . (3)

From now on, we shortly denote the r- circulant matrix with Cr = circ(c0, c1, . . . , cn−1).

Definition 1.2. An nxn geometric circulant matrix Cr∗ is defined as the fol-
lowing

Cr∗ =


c0 c1 c2 . . . cn−1

rcn−1 c0 c1 . . . cn−2
r2cn−2 rcn−1 c0 . . . cn−3

...
...

...
. . .

...
rn−1c1 rn−2c2 rn−3c3 . . . c0

 . (4)

by Kızılateş and Tuğlu in [10]. For brevity, we denote the geometric circulant
matrix with Cr∗ = circ(c0, c1, . . . , cn−1). If we choose r = 1, we get the circulant
matrix.

In view of the above papers, we use the algebra methods, the properties of the
r-circulant matrix and the geometric circulant matrix to estimate the upper and
lower bounds for the spectral norms of these matrices involving the bi-periodic
Jacobsthal numbers and bi-periodic Jacobsthal Lucas numbers. Then we give
bounds for the spectral norms of Kronecker and Hadamard products of these
r-circulant matrices and geometric circulant matrices. And also we give new
formulas to compute the eigenvalues and determinant of r-circulant matrices
with the bi-periodic Jacobsthal numbers.

Lemma 1.3. The summation of the squares of the first n terms of bi-periodic
Jacobsthal sequences is given as the following:

n∑
i=1

(
2b

a

)ε(i+1)
(

ĵi

2b
i
2 c

)2

=
1

a

ĵmĵm+1

2m−1
. (5)
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Proof. By using Binet forms of bi-periodic Jacobsthal sequences we have(
2b

a

)ε(i+1)
(

ĵi

2b
i
2 c

)2

=
2ab

(α− β)2

[(
α2

2ab

)k
−
(
β2

2ab

)k
− 2(−1)k

]
.

Using the properties ab(α+ 2) = α2 and ab(β + 2) = β2, it is obtained that

n∑
i=1

(
2b
a

)ε(i+1)
(

ĵi

2b
i
2
c

)2
= 2ab

(α−β)2

[
n∑
i=1

(
α2

2ab

)k
−

n∑
i=1

(
β2

2ab

)k
− 2

n∑
i=1

(−1)k
]

=

(
α2

2ab

)m+1
−
(
α2

2ab

)
(
α2

2ab

)
−1

= ĵn ĵn−1

a2n−2 .

�

Lemma 1.4. The following property holds for the bi-periodic Jacobsthal se-
quences

m∑
i=1

(
2b

a

)ε(i+1)
(

ĵi

|r|i2b i2 c

)2

=
n|r|2n

a2b2 + 8ab

[
ab2ĉ2n−|r|ĉ2n+2+2ab|r|(a2b2+8ab−1)

(1+|r|2− |r|
2

(ab+4))(2|r|)n

+2ab[1− (−1)n]

]
(6)

Proof. The proof is made by using similar procedure with the proof of the pre-
vious lemma.

For any A = [aij ] ∈Mm,n(C), the Frobenious (or Euclidean) norm of matrix
A is displayed by the following equality:

‖A‖E =

 m∑
i=1

n∑
j=1

|aij |2
 1

2

, (7)

and the spectral norm of matrix A is shown as

‖A‖2 =
√

max
1≤i≤n

λi(AHA), (8)

where AH is the conjugate transpose of matrix A and λi(A
HA) is an eigenvalue

of AHA. �

Lemma 1.5. Suppose that A ∈ Mm,n(C), then the following inequalities hold
between the Euclid and spectral norms [20].

1√
n
‖A‖E ≤ ‖A‖2 ≤ ‖A‖E ,

‖A‖2 ≤ ‖A‖E ≤
√
n‖A‖2.

(9)

Lemma 1.6. Suppose that A,B ∈ Mm,n(C), then the Hadamard product of
A,B is the mxn matrix of element wise products, namely [21,22,23]

A ◦B = (aijbij).

The following property is satisfied by

‖A ◦B‖2 ≤ ‖A‖2‖B‖2. (10)
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r1(A), the maximum row length norm, c1(B), the maximum column length norm

are given as r1(A) = max
1≤i≤n

√
n∑
j=1

|bij |2 and c1(C) = max
1≤j≤n

√
n∑
j=1

|cij |2 with the

following property

‖A ◦B‖2 ≤ r1(A)c1(B). (11)

Let A ∈ Mm,n(C) and B ∈ Mp,q(C) be given, then the Kronecker product of
A,B is defined by

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ,
and has the following property [22]

‖A⊗B‖2 = ‖A‖2‖B‖2. (12)

2. Lower and Upper Bounds of r- Circulant Matrices Involving
bi-periodic Jacobsthal Numbers

Theorem 2.1. Let r ∈ C and Jr = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be an r- circulant matrix with bi-periodic Jacobsthal numbers, then the upper and
lower bounds for the spectral norm of Jr are obtained as

(i) If |r| ≥ 1, then√
ĵnĵn−1
a2n−2

≤ ‖Jr‖2 ≤

√
(n− 1)r

ĵnĵn−1
a2n−2

.

(ii) If |r| < 1, then

|r|

√
ĵnĵn−1
a2n−2

≤ ‖Jr‖2 ≤

√
(n− 1)

ĵnĵn−1
a2n−2

.

Proof. The r- circulant matrix Jr is of the form

Jr =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

r
(

2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

r
(

2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

r
(

2b
a

) ε(n−2)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2

ĵn−3

2
bn−3

2
c

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

r
(

2b
a

) ε(2)
2 ĵ1 r

(
2b
a

) ε(3)
2 ĵ2

2
r
(

2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0



.
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(i) For |r| ≥ 1, by using (5), (7) we have

‖JrJr∗‖2F =
n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k|r|2
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
≥

n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
= n

n−1∑
k=0

(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
= n

(
ĵn ĵn−1

a2n−2

)
.

From the equality (9),

‖Jr‖2 ≥
‖Jr‖F√

n
≥

√
ĵnĵn−1
a2n−2

.

On the other hand, let Jr = B ◦ C where B = [bij ] and C = [cij ] are defined as

B =


ĵ0 1 1 . . . 1

r ĵ0 1 . . . 1

r r ĵ0 . . . 1
...

...
...

. . .
...

r r r . . . ĵ0

 ,
and

C =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c(

2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c(

2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2

ĵn−3

2
bn−3

2
c

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2

(
2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0



.

By the maximum row and column length norm of these matrices, it is satisfied
that

r1(B) = max
1≤i≤n

√
n∑
j=1

|bij |2 =

√
n∑
j=1

|bnj |2 =
√
ĵ20 + (n− 1)r =

√
(n− 1)r,

c1(C) = max
1≤j≤n

√
n∑
i=1

|cij |2 =

√
ĵn ĵn−1

a2n−2 .

By using (11), we obtain

‖Jr‖2 ≤ r1(B)c1(C) =

√
(n− 1)r

ĵnĵn−1
a2n−2

.

The proof is completed for the first part.
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(ii) For |r| < 1, by using (5), (7) we have

‖Jr∗‖2F =
n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k|r|2
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
≥

n−1∑
k=0

(n− k + k)|r|2
(
2b
a

)ε(k+1)
(

ĵk+1

2b
k+1
2
c

)2
= n|r|2 ĵn ĵn−1

a2n−2 .

From (9), we get

‖Jr∗‖2 ≥
‖Jr∗‖F√

n
≥ |r|

√
ĵnĵn−1
a2n−2

.

On the other hand, let Jr = B ◦ C where B,C are given in the following forms:

B =


ĵ0 1 1 . . . 1

r ĵ0 1 . . . 1

r r ĵ0 . . . 1
...

...
...

. . .
...

r r r . . . ĵ0

 ,
and

C =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c(

2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c(

2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2

ĵn−3

2
bn−3

2
c

.

.

.

.

.

.

.

.

.
.
. .

.

.

.(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2

(
2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0



.

By the maximum row and column length norm of these matrices, it is satisfied
that

r1(B) = max
1≤i≤n

√
n∑
j=1

|bij |2 =

√(
2b
a

) ε(1)
2 ĵ20 + (n− 1),

c1(C) = max
1≤j≤n

√
n∑
i=1

|cij |2 =

√
n−1∑
k=0

[(
2b
a

) ε(n)
2 ĵi

2b
i
2
c

]2
=

√
ĵn ĵn−1

a2n−2 .

By using (11), we obtain the second part of the proof.

‖Jr‖2 ≤ r1(B)c1(C) =

√
(n− 1)ĵnĵn−1

a2n−2
.

Therefore the proof is completed. �

Corollary 2.2. Let A = B = Jr = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be an r- circulant matrix with bi-periodic Jacobsthal numbers, then the lower and
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upper bounds for the spectral norm of Kronecker product of A and B are demon-
strated by

(i) If |r| ≥ 1, then

ĵnĵn−1
a2n−2

≤ ‖A⊗B‖2 ≤ (n− 1)r
ĵnĵn−1
a2n−2

.

(ii) If |r| < 1, then

|r|

√
ĵnĵn−1
a2n−2

≤ ‖A⊗B‖2 ≤ (n− 1)
ĵnĵn−1
a2n−2

.

Proof. It is clear that the proof is seen by using ‖A⊗B‖2 = ‖A‖2‖B‖2. �

Corollary 2.3. Let A = B = Jr = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be an r- circulant matrix whose entries are bi-periodic Jacobsthal numbers, then
the upper bounds for the spectral norm of Hadamard product of A and B are
demonstrated by

(i) If |r| ≥ 1, then

‖A ◦B‖2 ≤ (n− 1)r
ĵnĵn−1
a2n−2

.

(ii) If |r| < 1, then

‖A ◦B‖2 ≤ (n− 1)
ĵnĵn−1
a2n−2

.

Proof. The proof is easily seen by ‖A ◦B‖2 ≤ ‖A‖2‖B‖2. �

Lemma 2.4. ] Let r ∈ C and Jr = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be an r- circulant matrix with bi-periodic Jacobsthal numbers. Then the eigen-
values are computed as

λi(Jr) =

n−1∑
k=0

(
2b

a

) ε(k+1)
2 ĵk

2b
k
2 c
r
k
nwjk,

where w = e−
2πi
n , i =

√
−1, j = 0, 1, ..., n− 1.

Theorem 2.5. Let r ∈ C and Jr = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be an r- circulant matrix with bi-periodic Jacobsthal numbers. Then the eigen-
values are computed as

λj(Jr) =
r

1
nwj((2ab)ξ(n)rĵn−1 + 1) + r

√
(2ab)ĵn

(r
2
nw2j − 1 +

√
ab/2r

1
nwj)

where w = e−
2πi
n , i =

√
−1, j = 0, 1, ..., n− 1.
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Proof. By Binet formula, for n is even, we obtain that

n−1∑
k=0

(
2b
a

) ε(k+1)
2 ĵk

2b
k
2
c
r
k
nwjk

=
√
2ab

α−β

n−1∑
k=0

αk−βk
(2ab)b k2 c

r
k
nwjk

=
√
2ab

α−β

 (αr
1
n wj)n

(2ab)
bn

2
c −1

αr
1
n wj√
(2ab)

−1
−

(βr
1
n wj)n

(2ab)
bn

2
c−1

βr
1
n wj√
(2ab)

−1


=

√
2ab

(α−β)
√

(2ab)n−1

[
r(αwj)n−

√
(2ab)n

αr
1
nwj−

√
(2ab)

− r(βwj)n−
√

(2ab)n

βr
1
nwj−

√
(2ab)

]
.

Then

= 1

(α−β)
√

(2ab)n−2



−2abr1+
1
nwjn+j(αn−1 − βn−1)

−rwjn
√

(2ab)(αn − βn)

−
√

(2ab)nr
1
nwj(α− β)

−2abr
2
nw2j+2ab−

√
(2ab)abr

1
nwj


=

r1+
1
nwj ĵn−1+r

√
(2ab)ĵn+r

1
nwj

(r
2
nw2j−1+

√
ab/2r

1
nwj)

=
r

1
nwj(ĵn−1+1)+r

√
(2ab)ĵn

(r
2
nw2j−1+

√
ab/2r

1
nwj)

.

Similarly for n is odd, we have

n−1∑
k=0

(
2b
a

) ε(k+1)
2 ĵk

2b
k
2
c
r
k
nwjk =

2abr1+
1
nwjn+j ĵn−1+rw

jn
√

(2ab)ĵn+r
1
nwj

(r
2
nw2j−1+

√
ab/2r

1
nwj)

=
r

1
nwj(2abrĵn−1+1)+r

√
(2ab)ĵn

(r
2
nw2j−1+

√
ab/2r

1
nwj)

.

By combining the results, the proof is completed. �

Theorem 2.6. The determinant of

Jr = circr((
2b

a
)
ε(1)
2 ĵ0, (

2b

a
)
ε(2)
2 ĵ1, . . . , (

2b

a
)
ε(n)
2

ĵn−1

2b
n−1
2 c

)

is formulated by

det(Jr) =
(r
√

(2ab)ĵn)n − r((2ab)ξ(n)rĵn−1 + 1)n

(
√

(2ab)n − αnr)(
√

(2ab)n − βnr)
.

Proof. We know that det(Jr) =
n−1∏
j=0

λj(Jr). By the Theorem 2.6, it is obtained

that

det(Jr) =

n−1∏
j=0

r
1
nwj((2ab)ξ(n)rĵn−1 + 1) + r

√
(2ab)ĵn

(αr
1
nwj −

√
(2ab))(βr

1
nwj −

√
(2ab))
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By using the property
n−1∏
j=0

(x− ywj) = xn − yn the proof is easily completed.

det(Jr) =
(r
√

(2ab)ĵn)n − r((2ab)ξ(n)rĵn−1 + 1)n

(
√

(2abn)− αnr)(
√

(2abn)− βnr)
.

�

3. Lower and Upper Bounds of Geometric Circulant Matrices
Involving bi-periodic Jacobsthal Numbers

Theorem 3.1. Let r ∈ C and Jr∗ = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be a geometric circulant matrix with bi-periodic Jacobsthal numbers, then the up-
per and lower bounds for the spectral norm of Jr∗ are obtained as

(i) If |r| ≥ 1, then√
ĵnĵn−1
a2n−2

≤ ‖Jr∗‖2 ≤

√
ĵnĵn−1
a2n−2

.
1− |r|2n
1− |r|2

.

(ii) If |r| < 1, then

n|r|2n

a2b2 + 8ab

[
ab(2ĉ2n − |r|ĉ2n+2 + 2ab(|r|(a2b2 + 8ab− 1)))

(1 + |r|2 − |r|
2
(ab+ 4))(2|r|)n

+ 2ab[1− (−1)m]

]
≤ ‖Jr∗‖2

‖Jr∗‖2 ≤

√
(n− 1)

ĵnĵn−1
a2n−2

.

Proof. The geometric circulant matrix Jr∗ is of the form

Jr∗ =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

r
(

2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

r2
(

2b
a

) ε(n−1)
2

ĵn−2

2
bn−2

2
c

r
(

2b
a

) ε(n)
2

ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2

ĵn−3

2
bn−3

2
c

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

rn−1
(

2b
a

) ε(2)
2 ĵ1 rn−2

(
2b
a

) ε(3)
2 ĵ2

2
rn−3

(
2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0



.

(i) For |r| ≥ 1, by using the definiton of Frebinous norm, we have

‖Jr∗‖2E =
n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k|rn−k|2
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
≥

n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
= n

n−1∑
k=0

(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
= n

(
ĵn ĵn−1

a2n−2

)
.
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From the equality (9), √√√√( ĵnĵn−1
a2n−2

)
≤ ‖Jr∗‖2.

On the other hand, let the matrices B and C be presented by

B =


1 1 1 . . . 1
r 1 1 . . . 1
r2 r 1 . . . 1
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . 1

 ,
and

C =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c(

2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2 ĵn−2

2
bn−2

2
c(

2b
a

) ε(n−1)
2 ĵn−2

2
bn−2

2
c

(
2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2 ĵn−3

2
bn−3

2
c

...
...

...
. . .

...(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2

(
2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0


.

where Jr∗ = B ◦ C. The maximum row and column length norm of these
matrices are presented by

r1(B) = max
1≤i≤n

√
n∑
j=1

|bij |2 =

√
n∑
j=1

|bnj |2 =
√

1−|r|2n
1−|r|2 ,

c1(C) = max
1≤j≤n

√
n∑
i=1

|cij |2 =

√
ĵn ĵn−1

a2n−2 .

By using (11), we obtain

‖Jr∗‖2 ≤ r1(B)c1(C) =

√
ĵnĵn−1
a2n−2

.
1− |r|2n
1− |r|2

.

(ii) For |r| < 1,

‖Jr∗‖2E =
n−1∑
k=0

(n− k)
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
+
n−1∑
k=1

k|rn−k|2
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
≥

n−1∑
k=0

|rn−k|2
(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c

)2
= n|r|2n

n−1∑
k=0

(
2b
a

)ε(k+1)
(

ĵk

2b
k
2
c|r|k

)2

= n|r|2n
a2b2+8ab

[
ab(2ĉ2n−|r|ĉ2n+2+2ab(|r|(a2b2+8ab−1)))

(1+|r|2− |r|2 (ab+4))(2|r|)n
+ 2ab[1− (−1)n]

]
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For the matrices B and C as mentioned above, we have

B =


1 1 1 . . . 1
r 1 1 . . . 1
r2 r 1 . . . 1
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . 1

 ,
and

C =



(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2
. . .

(
2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c(

2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0

(
2b
a

) ε(2)
2 ĵ1 . . .

(
2b
a

) ε(n−1)
2 ĵn−2

2
bn−2

2
c(

2b
a

) ε(n−1)
2 ĵn−2

2
bn−2

2
c

(
2b
a

) ε(n)
2 ĵn−1

2
bn−1

2
c

(
2b
a

) ε(1)
2 ĵ0 . . .

(
2b
a

) ε(n−2)
2 ĵn−3

2
bn−3

2
c

...
...

...
. . .

...(
2b
a

) ε(2)
2 ĵ1

(
2b
a

) ε(3)
2 ĵ2

2

(
2b
a

) ε(4)
2 ĵ3

2
. . .

(
2b
a

) ε(1)
2 ĵ0


.

In this case Jr∗ = B ◦ C and it is obtained that

r1(B) = max
1≤i≤n

√
n∑
j=1

|bij |2 =

√
n∑
j=1

|b1j |2 =
√
n,

c1(C) = max
1≤j≤n

√
n∑
i=1

|cij |2 =

√
ĵn ĵn−1

a2n−2 .

By using (11), we obtain

‖Jr∗‖2 ≤ r1(B)c1(C) =

√
n
ĵnĵn−1
a2n−2

.

�

Corollary 3.2. Let A = B = Jr∗ = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be a geometric circulant matrix with bi-periodic Jacobsthal numbers, then the
lower and upper bounds for spectral norm of Kronecker product of A and B are
demonstrated by

(i) If |r| ≥ 1, then

ĵnĵn−1
a2n−2

≤ ‖A⊗B‖2 ≤ (n− 1)r
ĵnĵn−1
a2n−2

.
1− |r|2n

1− |r|2
.

(ii) If |r| < 1, then{
n|r|2n

a2b2+8ab

[
ab(2ĉ2n−|r|ĉ2n+2+2ab(|r|(a2b2+8ab−1)))

(1+|r|2− |r|2 (ab+4))(2|r|)n
+ 2ab[1− (−1)m]

]}
≤ ‖A⊗B‖2 ≤ ĵn ĵn−1

a2n−2 .
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Corollary 3.3. Let A = B = Jr∗ = circr((
2b
a )

ε(1)
2 ĵ0, (

2b
a )

ε(2)
2 ĵ1, . . . , (

2b
a )

ε(n)
2

ĵn−1

2b
n−1
2
c
)

be a geometric circulant matrix with bi-periodic Jacobsthal numbers, then the up-
per bounds for spectral norm of Hadamard product of A and B are demonstrated
by

(i) If |r| ≥ 1, then

‖A ◦B‖2 ≤
ĵnĵn−1
a2n−2

.
1− |r|2n

1− |r|2
.

(ii) If |r| < 1, then

‖A ◦B‖2 ≤ n
ĵnĵn−1
a2n−2

.

Proof. The proof is easily seen by ‖A ◦B‖2 ≤ ‖A‖2‖B‖2. �
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