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Abstract. We introduce the concepts of fuzzy join-complete lattices and
Alexandrov L-pre-topologies in complete residuated lattices. We inves-

tigate the properties of fuzzy join-complete lattices on Alexandrov L-pre-

topologies and fuzzy meet-complete lattices on Alexandrov L-pre-cotopologies.
Moreover, we give their examples.
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1. Introduction

Ward et al.[13] introduced a complete residuated lattice which is an alge-
braic structure for many valued logic. It is an important mathematical tool as
algebraic structures for many valued logics [1-11,14].

Kim [6-8] studied the relations between L-fuzzy upper and lower approxima-
tion spaces and Alexandrov L-topologies in complete residuated lattices. More-
over, categories of fuzzy preorders, approximating operators and Alexandrov
topologies are isomorphic [8]. In particular, fuzzy powerset operators are inves-
tigated in [9].

For a complete Heyting algebra(or a frame) as the base category, Zhang[16-
18] introduced fuzzy complete lattices and the Dedekind-MacNeille completions
for fuzzy posets in complete lattices. Moreover, he investigate the properties of
completeness for fuzzy powerset operators on fuzzy poset (LX , eLX ).

In this paper, we introduce the concept of fuzzy join(resp. meet) -complete
lattice on Alexandrov L-pretopologies (resp. cotopologies). Zhang [14] only use
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the complete for a fuzzy poset (LX , eLX ). We diversify Zhang’s definition by
using completeness for a fuzzy poset (τ, eτ ) on Alexandrov L-pretopology. We
investigate the properties of join (meet)-preserving maps. The maps between
topological structures are easily handle by using join (meet)-preserving maps.
For examples, we study the relations among open maps, continuous maps and
join (meet)-preserving maps. We give their examples.

2. Preliminaries

Definition 2.1. [1,3-5,11] An algebra (L,∧,∨,�,→,⊥,>) is called a complete
residuated lattice if it satisfies the following conditions:

(L1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and
the least element ⊥;

(L2) (L,�,>) is a commutative monoid;
(L3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we always assume that (L,≤,�,→∗) is complete residuated
lattice.

For α ∈ L,A ∈ LX , we denote (α→ A), (α� A), αX ∈ LX as (α→ A)(x) =
α→ A(x), (α�A)(x) = α�A(x), αX(x) = α and x∗ = x→ ⊥.

Lemma 2.2. [1,3-5,11] For each x, y, z, xi, yi, w ∈ L, we have the following
properties.

(1) > → x = x, ⊥� x = ⊥,
(2) If y ≤ z, then x� y ≤ x� z, x→ y ≤ x→ z and z → x ≤ y → x,
(3) x ≤ y iff x→ y = >.
(4) x→ (

∧
i yi) =

∧
i(x→ yi),

(5) (
∨
i xi)→ y =

∧
i(xi → y),

(6) x� (
∨
i yi) =

∨
i(x� yi),

(7) (x� y)→ z = x→ (y → z) = y → (x→ z),
(8) (x→ y)� (z → w) ≤ (x� z)→ (y � w) and x→ y ≤ (x� z)→ (y � z),
(9) (x→ y)� (y → z) ≤ x→ z,
(10)

∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi) and

∧
i∈Γ xi →

∧
i∈Γ yi ≥

∧
i∈Γ(xi →

yi),
(11) x→ y ≤ (y → z)→ (x→ z) and x→ y ≤ (z → x)→ (z → y).
(12) If (x∗)∗ = x for each x ∈ X, then (x� y∗)∗ = x→ y and x→ y = y∗ →

x∗.

Definition 2.3. [1,3-5,10] Let X be a set. A function eX : X×X → L is called:
(E1) reflexive if eX(x, x) = > for all x ∈ X,
(E2) transitive if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,
(E3) antisymmetric if eX(x, y) = eX(y, x) = >, then x = y.
If e satisfies (E1) and (E2), (X, eX) is called a fuzzy preordered set. If e satisfies

(E1), (E2) and (E3), (X, eX) is called a fuzzy partially ordered set (simply, fuzzy
poset).

Definition 2.4. [2,14-18] Let (X, eX) be a fuzzy poset and A ∈ LX .
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(1) A point x0 is called a fuzzy join of A, denoted by x0 = tXA on (X, eX),
if it satisfies

(J1) A(x) ≤ eX(x, x0),
(J2)

∧
x∈X(A(x)→ eX(x, y)) ≤ eX(x0, y).

The pair (X, eX) is called fuzzy join complete if tXA exists for each A ∈ LX .
A point x1 is called a fuzzy meet of A, denoted by x1 = uXA on (X, eX), if

it satisfies
(M1) A(x) ≤ eX(x1, x),
(M2)

∧
x∈X(A(x)→ eX(y, x)) ≤ eX(y, x1).

The pair (X, eX) is called fuzzy meet complete if uXA exists for each A ∈ LX .
The pair (X, eX) is called fuzzy complete if uXA and tXA exists for each

A ∈ LX .

Remark 2.1. Let (X, eX) be a fuzzy poset and A ∈ LX .
(1) x0 = tXA on (X, eX) iff

∧
x∈X(A(x)→ eX(x, y)) = eX(x0, y).

(2) x1 = uXA on (X, eX) iff
∧
x∈X(A(x)→ eX(y, x)) = eX(y, x1).

(3) If eX(x, y) = eX(z, y) for all y ∈ X, then 1 = eX(x, x) = eX(z, x) and
eX(x, z) = eX(z, z) = 1 implies x = z.

Definition 2.5. [9,18] Let (LX , eLX ) and (LY , eLY ) be fuzzy posets and F :
LX → LY a map.

(1) F is called a join preserving map if F(tLX Φ) = tLY F→(Φ) for all Φ ∈
LL

X

, where F→(Φ)(B) =
∨
F(A)=B Φ(A).

(2) F is is called a meet preserving map if F(uLX Φ) = uLY F→(Φ) for all

Φ ∈ LLX

.

3. Fuzzy join and meet preserving maps on Alexandrov
L-pretopologies

Definition 3.1. (1) A subset τ ⊂ LX is called an Alexandrov L-pretopology on
X iff it satisfies the following conditions:

(O1) αX ∈ τ .
(O2) If Ai ∈ τ for all i ∈ I, then

∨
i∈I Ai ∈ τ .

(O3) If A ∈ τ and α ∈ L, then α�A ∈ τ .
(2) A subset η ⊂ LX is called an Alexandrov L-precotopology on X iff it

satisfies the following conditions:
(CO1) α→ ⊥X ∈ η.
(CO2) If Ai ∈ η for all i ∈ I, then

∧
i∈I Ai ∈ η.

(CO3) If A ∈ η and α ∈ L, then α→ A ∈ η.
A subset τ ⊂ LX is called an Alexandrov L-topology on X iff it is both

Alexandrov L-pretopology and Alexandrov L-precotopology on X.

Lemma 3.2. Let τ ⊂ LX . Define eτ : τ × τ → L as eτ (A,B) =
∧
x∈X(A(x)→

B(x)). Then the following statements hold.
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(1) (τ, eτ ) is a fuzzy poset.
(2) tτΦ is a fuzzy join of Φ ∈ Lτ iff

∧
A∈τ (Φ(A)→ eτ (A,B)) = eτ (tτΦ, B).

(3) uτΦ is a fuzzy meet of Φ ∈ Lτ iff
∧
A∈τ (Φ(A)→ eτ (B,A)) = eτ (B,uτΦ).

(4) If tτΦ is a fuzzy join of Φ ∈ Lτ , then it is unique. Moreover, if uτΦ is a
fuzzy meet of Φ ∈ Lτ , then it is unique.

Proof (1) (E1) eτ (A,A) =
∧
x∈X(A(x)→ A(x)) = > for all A ∈ τ ,

(E2) By Lemma 2.2(9), eτ (A,B) � eτ (B,C) =
∧
x∈X(A(x) → B(x)) �∧

x∈X(B(x) → C(x)) ≤
∧
x∈X((A(x) → B(x)) � (B(x) → C(x))) ≤ eτ (A,C),

for all A,B,C ∈ τ ,
(E3) If eτ (A,B) = eτ (B,A) = >, By Lemma 2.2(3), A = B. Hence (τ, eτ ) is

a fuzzy poset.
(2) Let tτΦ be a fuzzy join of Φ ∈ Lτ . By (J1), since Φ(A) ≤ eτ (A,tτΦ),

we have Φ(A)� eτ (tτΦ, B) ≤ eτ (A,tτΦ)� eτ (tτΦ, B) ≤ eτ (A,B).
Hence eτ (tτΦ, B) ≤

∧
A∈τ (Φ(A) → eτ (A,B)). By (J2), eτ (tτΦ, B) =∧

A∈τ (Φ(A)→ eτ (A,B))
(3) It is similarly proved as (2).
(4) Let A1, A2 be fuzzy joins of Φ ∈ Lτ . Then , for all B ∈ τ ,∧

A∈τ
(Φ(A)→ eτ (A,B)) = eτ (A1, B) = eτ (A2, B).

Put B = A1. Then > = eτ (A1, A1) = eτ (A2, A1) iff A2 ≤ A1. Put B = A2.
Then > = eτ (A1, A2) = eτ (A2, A2) iff A1 ≤ A2. Hence A1 = A2.

Theorem 3.3. Let (X, τX) and (Y, τY ) be Alexandrov L-pretopological spaces.
Then the following statements are equivalent:

(1) F : (τX , eτX ) → (τY , eτY ) is a join preserving map, that is, F(tτX Φ) =
tτY F→(Φ).

(2) For all α ∈ L,A,Ai ∈ τX , we have F(α � A) = α � F(A) ∈ τY and
F(

∨
i∈ΓAi) =

∨
i∈Γ F(Ai) ∈ τY

Proof (1) ⇒ (2) Since F is a join preserving map, we have F(tτX Φ) =
tτY F→(Φ) where F→(Φ)(B) =

∨
B=F(A) Φ(A) for all Φ ∈ LτX . Moreover,

eτX (tτX Φ, B) =
∧
A∈τX (Φ(A)→ eτ (A,B))

=
∧
A∈τ eτX (Φ(A)�A,B)

= eτX (
∨
A∈τX Φ(A)�A,B),

eτY (tτY F→(Φ), B)
=

∧
C∈τY (F→(Φ)(C)→ eτY (C,B))

=
∧
C∈τY eτY (F→(Φ)(C)� C,B)

= eτY (
∨
C∈τY F

→(Φ)(C)� C,B).

By Remark 2.1(3),
tτX Φ =

∨
A∈τX (Φ(A) � A) ∈ τX and tτY F→(Φ) =

∨
C∈τY (F→(Φ)(C) � C) ∈

τY .
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Define Φ1 : τX → L as Φ1(A) = α and Φ1(B) = ⊥, otherwise. Then

(tτX Φ1)(x) =
∨

D∈τX

(Φ1(D)�D(x)) = α�A(x).

Since F→(Φ1)(B) =
∨
B=F(A) Φ1(A) and F(tτX Φ1) = tF→(Φ1) for all Φ1 ∈

LτX , we have

tF→(Φ1)(y) =
∨
C=F(A)∈τY (F→(Φ1)(C)� C(y))

= Φ1(A)�F(A)(y) = α�F(A)(y)
= F(tτX Φ1)(y) = F(α�A)(y).

Hence F(α�A) = α�F(A) ∈ τY .
Let {Ai ∈ τX | i ∈ Γ} be given. Define Φ2 : τX → L as Φ2(Ai) = > for i ∈ Γ

and Φ2(B) = ⊥, otherwise. Then

(tτX Φ2)(x) =
∨
A∈τX

(Φ2(A)�A(x)) =
∨
i∈Γ

Ai(x).

Since F→(Φ2)(B) =
∨
B=F(A) Φ2(A) and F(tτX Φ2) = tτY F→(Φ2) for Φ2 ∈

LτX , we have

F(tΦ2)(y) = F(
∨
i∈ΓAi)(y),

tτY F→(Φ2)(y) =
∨
B∈LY (F→(Φ2)(B)�B(y))

=
∨
B∈τY ((

∨
B=F(A) Φ2(A))�B(y))

=
∨
A∈τX (Φ2(A)�F(A)(y))

=
∨
i∈Γ F(Ai)(y).

Hence F(
∨
i∈ΓAi) =

∨
i∈Γ F(Ai) ∈ τY .

(2)⇒ (1) Put B0 = tF→(Φ) for all Φ ∈ LτX . Then
∨
A∈τX Φ(A)�F(A) ∈ τY

from (2). Thus,

eτY (B0, B)
=

∧
C∈τY (F→(Φ)(C)→ eτY (C,B))

=
∧
C∈τY ((

∨
F(A)=C Φ(A)→ eτY (F(A), B))

=
∧
A∈τX (Φ(A)→ eτY (F(A), B))

=
∧
A∈τX eτY (Φ(A)�F(A), B)

= eτY (
∨
A∈τX Φ(A)�F(A), B).

Hence F(tτX Φ) = tτY F→(Φ) from:

tτY F→(Φ)(y) = B0(y) =
∨
A∈τX Φ(A)�F(A)(y)

= F(
∨
A∈τX (Φ(A)�A)(y) (by (2))

= F(tτX Φ)(y).

Corollary 3.4. Let (X, τX) and (Y, τY ) be Alexandrov L-pretopological spaces.
Let f : X → Y be a map and f→ : LX → LY defined as f→(A)(y) =∨
x∈f−1({y})A(x). Then the following statements are equivalent:

(1) f→ : (τX , eτX )→ (τY , eτY ) is a join preserving map.
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(2) For all α ∈ L,A,Ai ∈ τX , we have f→(α � A) = α � f→(A) ∈ τY and
f→(

∨
i∈ΓAi) =

∨
i∈Γ f

→(Ai) ∈ τY
(3) f→ : (X, τX)→ (Y, τY ) is an open map, that is, for each A ∈ τX , f→(A) ∈

τY .

We can prove the above corollary from Theorem 3.3 and f→(α � A) = α �
f→(A) and f→(

∨
i∈ΓAi) =

∨
i∈Γ f

→(Ai).

Corollary 3.5. Let (X, τX) and (Y, τY ) be an Alexandrov L-pretopological spaces.
Let f : X → Y be a map and f← : LY → LX defined as f←(B)(x) = B(f(x)).

Then the following statements are equivalent:
(1) f← : (τY , eτY )→ (τX , eτX ) is a join preserving map.
(2) For all α ∈ L,B,Bi ∈ τY , we have f←(α � B) = α � f←(B) ∈ τX and

f←(
∨
i∈ΓBi) =

∨
i∈Γ f

←(Bi) ∈ τX .
(3) f : (X, τX) → (X, τY ) is continuous, that is, for each B ∈ τY , f←(B) ∈

τX .

It follows from f←(α�A) = α� f←(A) and f←(
∨
i∈ΓAi) =

∨
i∈Γ f

←(Ai).

Theorem 3.6. Let (X, ηX) and (Y, ηY ) be an Alexandrov L-precotopological
spaces. Then the following statements are equivalent:

(1) G : (ηX , eηX )→ (ηY , eηY ) is a meet preserving map.
(2) For all α ∈ L,A,Ai ∈ ηX , we have G(α → A) = α → G(A) ∈ ηY and

G(
∧
i∈ΓAi) =

∧
i∈Γ G(Ai) ∈ ηY .

Proof (1) ⇒ (2) Since G is a meet preserving map, G(uηX Φ) = uηY G→(Φ)
for all Φ ∈ LηX . Then

eηX (B,uηX Φ) =
∧
A∈ηX (Φ(A)→ eηX (B,A))

=
∧
A∈ηX eηX (B,Φ(A)→ A)

= eηX (B,
∧
A∈ηX Φ(A)→ A),

eηY (B,uηY G→(Φ)) =
∧
C∈ηY (G→(Φ)(C)→ eηY (B,C))

=
∧
C∈ηY ((

∨
G(A)=C Φ(A)→ eηY (B,C)))

=
∧
A∈ηX (Φ(A)→ eηY (B,G(A))

=
∧
A∈ηX eηY (B,Φ(A)→ G(A))

= eηY (B,
∧
A∈ηX Φ(A)→ G(A)).

By Remark 2.1(3), uηX Φ =
∧
A∈τX (Φ(A)→ A) and uηY G→(Φ) =

∧
A∈ηX (Φ(A)→

G(A)) ∈ ηY .
Define Φ1 : ηX → L as Φ1(A) = α and Φ1(B) = ⊥, otherwise. Then

(uηX Φ1)(x) =
∧

A∈ηX

(Φ1(A)→ A(x)) = α→ A(x)

Since G→(Φ1)(B) =
∨
B=G(A) Φ1(A) and G(uηX Φ1) = uηY G→(Φ1) for Φ1 ∈ LηX ,

uηY G→(Φ1)(y) =
∧
B∈ηX (Φ1(A)→ G(A)(y))

= α→ G(A)(y) = G(uηX Φ1)(y) = G(α→ A)(y).
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Hence G(α→ A) = α→ G(A) ∈ ηY .
(J2) Let {Ai ∈ ηX | i ∈ Γ} be given. Define Φ2 : ηX → L as Φ2(Ai) = > for

i ∈ Γ and Φ2(B) = ⊥ otherwise. Then

uηX Φ2(x) =
∧

A∈ηX

(Φ2(A)→ A(x)) =
∧
i∈Γ

Ai(x).

Since G→(Φ2)(B) =
∨
B=G(A) Φ2(A) and G(uηX Φ2) = uηY G→(Φ2) for Φ2 ∈ LηX ,

we have

uηY G→(Φ2)(y) =
∧
A∈ηX (Φ2(A)→ G(A)(y))

=
∧
i∈Γ G(Ai)(y) = G(uηX Φ2)(y) = G(

∧
i∈ΓAi)(y).

Hence G(
∧
i∈ΓAi) =

∧
i∈Γ G(Ai) ∈ ηY .

(2) ⇒ (1) Since
∧
A∈ηX Φ(A)→ G(A) ∈ ηY ,

eηY (B,uηY G→(Φ))
=

∧
C∈ηY (G→(Φ)(C)→ eηY (B,C))

=
∧
C∈ηY ((

∨
G(A)=C Φ(A)→ eηY (B,C)))

=
∧
A∈ηX (Φ(A)→ eηY (B,G(A))

=
∧
A∈ηX eηY (B,Φ(A)→ G(A))

= eηY (B,
∧
A∈ηX Φ(A)→ G(A)).

Hence G(uηX Φ) = uηY G→(Φ) from:

uηY G→(Φ)(y) =
∧
A∈ηX (Φ(A)→ G(A)(y))

=
∧
A∈ηX G(Φ(A)→ A)(y)

= G(
∧
A∈ηX (Φ(A)→ A))(y)

= G(uηX Φ)(y).

Theorem 3.7. Let (x∗)∗ = x for each x ∈ L. Let (X, ηX) and (Y, ηY ) be an
Alexandrov L-precotopological spaces. Then the following statements are equiv-
alent:

(1) G : (ηX , eηX )→ (ηY , eηY ) is a meet preserving map.
(2) Define F : (τX , eτX ) → (τY , eτY ) as F(A) = G∗(A∗) where τX = {A∗ ∈

LX | A ∈ ηX} and τY = {B∗ ∈ LY | B ∈ ηY }. Then F : τX → τY is a join
preserving map.

Proof (1) ⇒ (2) Put B0 = tF→(Φ) for each Φ ∈ LτX . Then, for Ψ ∈
LηX with Ψ(A∗) = Φ(A), since G(uηX Ψ) = G(

∧
A∗∈ηX (Ψ(A∗) → A∗)) =

uηY G→(Ψ) =
∧
A∗∈ηX (Ψ(A∗)→ G(A∗)), we have
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eτY (B0, B)
=

∧
C∈τY (F→(Φ)(C)→ eτY (C,B))

=
∧
C∈τY ((

∨
F(A)=C Φ(A)→ eτY (F(A), B))

=
∧
A∈τX (Φ(A)→ eτY (F(A), B))

=
∧
A∗∈τ∗X

(Φ(A)→ eηY (B∗,F∗(A)))

= eηY (B∗,
∧
A∗∈τ∗X

(Φ(A)→ F∗(A)))

= eηY (B∗,
∧
A∗∈τ∗X

(Ψ(A∗)→ G(A∗)))

= eτY (
∨
A∈τX (Ψ(A∗)� G∗(A∗)), B)

= eτY (
∨
A∈τX Φ(A)�F(A), B).

eτY (B0, B) = eηY (B∗,
∧
A∗∈τ∗X

(Ψ(A∗)→ G(A∗)))

= eηY (B∗,G(
∧
A∗∈τ∗X

(Ψ(A∗)→ A∗)))

= eηY (G∗(
∧
A∗∈τ∗X

(Ψ(A∗)→ A∗)), B)

= eτY (F(
∨
A∈τX Φ(A)�A), B).

= eτY (F(tΦ), B).

Hence F(tΦ) = tF→(Φ).
(2) ⇒ (1) It is similarly proved as (1) ⇒ (2).

From above theorems, we can obtain the following corollaries.

Corollary 3.8. Let (x∗)∗ = x for each x ∈ L. Let (X, ηX) and (Y, ηY ) be
an Alexandrov L-precotopological spaces. Let f : X → Y be a map. Then the
following statements are equivalent:

(1) f→ : (ηX , eηX )→ (ηY , eηY ) is a meet preserving map.
(2) For all α ∈ L,A,Ai ∈ ηX , we have f→(α → A) = α → f→(A) ∈ ηY and

f→(
∧
i∈ΓAi) =

∧
i∈Γ f

→(Ai) ∈ ηX
(3) Define h : τX → τY as h(A) = (f→(A∗))∗ where τX = {A∗ ∈ LX | A ∈

ηX} and τY = {B∗ ∈ LY | B ∈ ηY }. Then h is a join preserving map.

Since f←(α→ A) = α→ f←(A), f←(
∧
i∈ΓAi) =

∧
i∈Γ f

←(Ai) and f←(A) =
(f←(A∗))∗, the following corollary holds.

Corollary 3.9. Let (x∗)∗ = x for each x ∈ L. Let (X, ηX) and (Y, ηY ) be
an Alexandrov L-precotopological spaces with τX = {A∗ ∈ LX | A ∈ ηX} and
τY = {B∗ ∈ LY | B ∈ ηY }.. Let f : X → Y be a map. Then the following
statements are equivalent:

(1) f← : (ηY , eηY )→ (ηX , eηX ) is a meet preserving map.
(2) For all α ∈ L,A,Ai ∈ ηY , we have f←(α → A) = α → f←(A) ∈ ηX and

f←(
∧
i∈ΓAi) =

∧
i∈Γ f

←(Ai) ∈ ηX
(3) f : (X, ηX)→ (X, ηY ) is continuous;i.e., for each A ∈ τY , f←(A) ∈ τX .
(4) f← : (τY , eτY )→ (τX , eτX ) is a join preserving map.
(5) f : (X, τX)→ (Y, τY ) is continuous;i.e., for each A ∈ τY , f←(A) ∈ τX .
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Example 3.10. Let ([0, 1],�,→, 0, 1) be a complete residuated lattice (ref.[1-4])
as

x� y = max{0, x+ y − 1}, x→ y = min{1− x+ y, 1}.
Define x∗ = x→ 0 = 1− x. Then (x∗)∗ = x. Let X = {x, y, z} and A ∈ [0, 1]X

with A(x) = 0.6, A(y) = 0.7, A(z) = 0.4.
(1) Define an Alexandrov [0, 1]-pretopology

τX = {(α�A) ∨ βX) | α, β ∈ [0, 1]}.

Since 0.8→ A = (0.8, 0.9, 0.6) 6∈ τX , τX is not an Alexandrov [0, 1]-precotopology.
Moreover, (τX , eτX ) is a fuzzy poset . For each Φ : τX → [0, 1], since

∨
C∈τX (Φ(C)

�C) ∈ τX for C ∈ τX , it follows that

eτ (tτX Φ, B) =
∧
C∈τX (Φ(C)→ eτX (C,B))

=
∧
C∈τX eτX (Φ(C)� C,B)

= eτX (
∨
C∈τX (Φ(C)� C), B)

By Lemma 2.9(2), (τX , eτX ) is a fuzzy join-complete lattice.
We obtain an Alexandrov [0, 1]-precotopology η = {(α → A) ∧ βX | α, β ∈

[0, 1]} and an Alexandrov [0, 1]-topology τ = {((α � A) ∨ βX), (α → A) ∧ βX |
α, β ∈ [0, 1]}. Similarly, (η, eη) is a fuzzy meet-complete lattice and (η, eτ ) is a
fuzzy complete lattice.

(2) From (1), we obtain an Alexandrov [0, 1]-precotopology

ηX = {A∗ | A ∈ τX} = {(α→ A∗) ∧ βX | α, β ∈ [0, 1]}.

Then (ηX , eηX ) is a fuzzy poset. For each Ψ : ηX → [0, 1] such that Ψ(A) =
Φ(A∗), since

∨
C∗∈τX (Φ(C∗)� C∗) ∈ τX , we have

eηX (B,uηX Ψ) =
∧
C∈ηX (Ψ(C)→ eηX (B,C))

=
∧
C∗∈τX (Ψ(C)→ eτX (C∗, B∗))

=
∧
C∗∈τX eτX (Ψ(C)� C∗, B∗)

= eτX (
∨
C∗∈τX (Φ(C∗)� C∗), B∗)

= eηX (B,
∧
C∗∈τX (Φ(C∗)→ C))

= eηX (B,
∧
C∈τ∗X

(Ψ(C)→ C))

By Lemma 2.9(3), (ηX , eηX ) is a fuzzy meet-complete lattice.
(3) Let Y = {u, v} and f : X → Y be a map defined as f(x) = f(y) =

u, f(z) = v. Then we obtain f→(A)(u) = 0.7, f→(A)(v) = 0.4. We obtain an
Alexandrov [0, 1]-pretopology

τY = {(α� f→(A)) ∨ βY | α, β ∈ [0, 1]}.

Then (τY , eτY ) is a fuzzy poset and a join-complete lattice. Since f→(α �
A) = α � f→(A) and f→(

∨
i∈ΓAi) =

∨
i∈Γ f

→(Ai), by Corollary 3.4(2) ,
f→ : (τX , eτX ) → (τY , eτY ) is a join-preserving map. Since f←(f→(A)) =
(0.7, 0.7, 0.4) 6∈ τX for f→(A) ∈ τY , by Corollary 3.5(3), f← : (τY , eτY ) →
(τX , eτX ) is not a join-preserving map.
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We obtain an Alexandrov [0, 1]-precotopology

ηY = {(α→ f→(A)∗) ∧ βY | α, β ∈ [0, 1]}.
For A∗ ∈ ηX , f→(A∗) = (0.4, 0.6) = (0.9→ f→(A)∗)∧ 0.6X ∈ ηY . By Corollary
3.8(2), f→ : (ηX , eηX )→ (ηY , eηY ) is a meet-preserving map.

We obtain an Alexandrov [0, 1]-precotopology

η1
Y = {(α→ f→(A∗)) ∧ βY ) | α, β ∈ [0, 1]}.

Since � is continuous;i.e; x �
∧
i∈Γ y

∗
i =

∧
i∈Γ(x � y∗i ) , (x∗)∗(x) = x and

(
∨
i∈Γ xi)

∗ =
∧
i∈Γ x

∗
i ,

x→
∨
i∈Γ

yi = (x�
∧
i∈Γ

y∗i )∗ = (
∧
i∈Γ

(x� y∗i ))∗ =
∨
i∈Γ

(x→ yi).

Since f is onto, f→((α → A∗) ∧ βX)(y) =
∨
x∈f−1({y})((α → A∗) ∧ βX)(x) =

(α→
∨
x∈f−1({y})A

∗(x)) ∧ βY = ((α→ f→(A∗)(y)) ∧ βY ) ∈ η1
Y .

Since
∧
i∈ΓBi = (α→ A∗)∧ βX for Bi ∈ ηX , f→(

∧
i∈ΓBi) =

∧
i∈Γ f

→(Bi) ∈
η1
Y . By Corollary 3.8(2), f→ : (ηX , eηX )→ (η1

Y , eη1Y ) is a meet-preserving map.

(4) Let Z = {u, v, w} and h : X → Z be a map defined as h(x) = h(y) =
u, h(z) = v. We obtain an Alexandrov [0, 1]-pretopology

τZ = {(α� h→(A)) ∨ βZ) | α, β ∈ [0, 1]}.
Then (τZ , eτZ ) is a fuzzy poset. Since h→(α�A) = α�h→(A) and h→(

∨
i∈ΓAi) =∨

i∈Γ h
→(Ai), by Corollary 3.4(2), h→ : (τX , eτX )→ (τZ , eτZ ) is a join-preserving

map.
We obtain an Alexandrov [0, 1]-precotopology

ηZ = {(α→ h→(A∗)) ∧ βZ) | α, β ∈ [0, 1]}.
Since

h→(A∗)(u) = 0.4, h→(A∗)(v) = 0.6, h→(A∗)(w) = 0,

h→(0.7→ A∗) = (0.7, 0.9, 0)
6= 0.7→ h→(A∗) = (0.7, 0.9, 0.3).

By Corollary 3.8(2), h→ : (ηX , eηX )→ (ηZ , eηZ ) is not a meet-preserving map.
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1. R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
2. L.Fan, A new approach to quantitative domain theory, Electronic Notes in Theoretic Com-

puter Science 45 (2011).
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